MHB What are the domain and range for the inverse function $f^{-1}$ of $f$?

AI Thread Summary
To find the inverse function \( f^{-1} \) of \( f(x) = 5 \sin x + 2 \) over the interval \( -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \), exchange \( x \) and \( y \) and solve for \( y \), resulting in \( f^{-1}(x) = \sin^{-1}\left(\frac{x-2}{5}\right) \). The domain of \( f(x) \) is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), which corresponds to the range of \( f^{-1}(x) \). The range of \( f(x) \) can be determined by evaluating \( 5 \sin x + 2 \), leading to a range of \( [1, 7] \). Consequently, the domain of \( f^{-1}(x) \) is also \( [1, 7] \). Thus, the domain and range relationships between the function and its inverse are established clearly.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the inverse function $f^{-1}$ of $f$.
Find the range of $f$ and the domain and range of $f^{-1}$
$$f(x)=5 \sin x +2; \quad -\frac{\pi}{2}\le x \le \frac{\pi}{2}$$
exchange x for y and solve for y
\begin{align*}\displaystyle
x&=5\sin y + 2 \\
\frac{x-2}{5}&=\sin y
\end{align*}
multiply $\sin^{-1}$ to both sides
$$\sin^{-1}\left( \frac{x-2}{5}\right)
=\sin^{-1}(\sin y)=f^{-1}(x)$$

ok how do get the range of $f$ and domain and range of $f^{-1}$
 
Mathematics news on Phys.org
Recall that the domain of $f(x)$ is the range of $f^{-1}(x)$, and the range of $f(x)$ is the domain of $f^{-1}(x)$.

So, you are given that the domain of $f(x)$ is $[-\frac{\pi}{2},\frac{\pi}{2}]$.
Therefore, the range of $f^{-1}(x)$ is $[-\frac{\pi}{2},\frac{\pi}{2}]$

Use this idea to determine the range of $f(x)$ and domain of $f^{-1}(x)$. (they should be the same thing)

We know that,
$-1 \leq sinx \leq 1$
If that is the range for $sinx$ then how will that change for $5sinx+2$?
 
A technical point: please don't say "multiply sin^{-1} to both sides". That sounds like you think "sin^{-1}" is a number. What you mean is "apply the function sin^{-1} to both sides".
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top