B What are the energy eigenvalues of a harmonic oscillator?

Lotto
Messages
251
Reaction score
16
TL;DR Summary
I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.
Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
 
Physics news on Phys.org
Lotto said:
TL;DR Summary: I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.

Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
It looks the energy levels of an ideal harmonic oscillator, and will be the sum of the potential and kinetic energy of the oscillator. How this relates to a vibrating molecule depends on how accurately the molecule can be modeled as an ideal harmonic oscillator.

In general, we know what energies are involved by looking at the Hamiltonian that we started with. In the case of the ideal harmonic oscillator, that Hamiltonian contains a kinetic energy term and a potential energy term.
 
  • Like
Likes vanhees71, gentzen, PeroK and 4 others
Indeed, these are the energy eigenvalues of a harmonic oscillator. It describes the conserved total energy of the oscillator, when it is prepared in a state of determined energy. The possible values of this total energy are the eigenvalues of the Hamilton operator,
$$\hat{H}=\frac{1}{2m} \hat{p}^2 + \frac{m \omega^2}{2} \hat{x}^2.$$
The energy eigenvalues are
$$E_n=h f \left (n+\frac{1}{2} \right) = \hbar \omega \left (n+\frac{1}{2} \right), \quad n \in \{0,1,2,3,\ldots \}=\mathbb{N}_0,$$
where ##\hbar=h/(2 \pi)## is the "modified quantum of action/Planck's constant)". Nowadays almost nobody uses the original ##h## anymore.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top