B What are the energy eigenvalues of a harmonic oscillator?

Lotto
Messages
251
Reaction score
16
TL;DR Summary
I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.
Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
 
Physics news on Phys.org
Lotto said:
TL;DR Summary: I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.

Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
It looks the energy levels of an ideal harmonic oscillator, and will be the sum of the potential and kinetic energy of the oscillator. How this relates to a vibrating molecule depends on how accurately the molecule can be modeled as an ideal harmonic oscillator.

In general, we know what energies are involved by looking at the Hamiltonian that we started with. In the case of the ideal harmonic oscillator, that Hamiltonian contains a kinetic energy term and a potential energy term.
 
  • Like
Likes vanhees71, gentzen, PeroK and 4 others
Indeed, these are the energy eigenvalues of a harmonic oscillator. It describes the conserved total energy of the oscillator, when it is prepared in a state of determined energy. The possible values of this total energy are the eigenvalues of the Hamilton operator,
$$\hat{H}=\frac{1}{2m} \hat{p}^2 + \frac{m \omega^2}{2} \hat{x}^2.$$
The energy eigenvalues are
$$E_n=h f \left (n+\frac{1}{2} \right) = \hbar \omega \left (n+\frac{1}{2} \right), \quad n \in \{0,1,2,3,\ldots \}=\mathbb{N}_0,$$
where ##\hbar=h/(2 \pi)## is the "modified quantum of action/Planck's constant)". Nowadays almost nobody uses the original ##h## anymore.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top