B What are the energy eigenvalues of a harmonic oscillator?

Click For Summary
The energy eigenvalues of a harmonic oscillator are given by the formula E_n=hf(n+1/2), which represents the total energy of the oscillator, encompassing both potential and kinetic energy. This total energy is conserved when the oscillator is in a specific energy state. The relationship to vibrating molecules depends on how closely they can be modeled as ideal harmonic oscillators. The Hamiltonian for the ideal harmonic oscillator includes terms for both kinetic and potential energy, confirming that the eigenvalues reflect the complete energy of the system. Understanding these concepts is essential for grasping the quantum mechanics of molecular vibrations.
Lotto
Messages
253
Reaction score
16
TL;DR
I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.
Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
 
Physics news on Phys.org
Lotto said:
TL;DR Summary: I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.

Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
It looks the energy levels of an ideal harmonic oscillator, and will be the sum of the potential and kinetic energy of the oscillator. How this relates to a vibrating molecule depends on how accurately the molecule can be modeled as an ideal harmonic oscillator.

In general, we know what energies are involved by looking at the Hamiltonian that we started with. In the case of the ideal harmonic oscillator, that Hamiltonian contains a kinetic energy term and a potential energy term.
 
  • Like
Likes vanhees71, gentzen, PeroK and 4 others
Indeed, these are the energy eigenvalues of a harmonic oscillator. It describes the conserved total energy of the oscillator, when it is prepared in a state of determined energy. The possible values of this total energy are the eigenvalues of the Hamilton operator,
$$\hat{H}=\frac{1}{2m} \hat{p}^2 + \frac{m \omega^2}{2} \hat{x}^2.$$
The energy eigenvalues are
$$E_n=h f \left (n+\frac{1}{2} \right) = \hbar \omega \left (n+\frac{1}{2} \right), \quad n \in \{0,1,2,3,\ldots \}=\mathbb{N}_0,$$
where ##\hbar=h/(2 \pi)## is the "modified quantum of action/Planck's constant)". Nowadays almost nobody uses the original ##h## anymore.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
982
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
1K