What are the generators of $\Bbb{Z}_6, \Bbb{Z}_8,$ and $\Bbb{Z}_{20}$?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Generators
Click For Summary

Discussion Overview

The discussion revolves around identifying the generators of the cyclic groups $\Bbb{Z}_6$, $\Bbb{Z}_8$, and $\Bbb{Z}_{20}$. Participants explore the concept of generators in the context of group theory, particularly focusing on the conditions under which an element can generate the entire group.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant states that the generators of $\Bbb{Z}_6$ are 1 and 5, as these are the values of $k$ for which $\gcd(6, k) = 1.
  • Another participant explains that the generators of $\Bbb{Z}_8$ are 1, 3, 5, and 7, based on the same gcd condition.
  • A further claim is made that the generators of $\Bbb{Z}_{20}$ include 1, 3, 7, 9, 11, 13, 17, and 19, again relying on the gcd condition.
  • One participant expresses confusion about the concept of a generator and its application, indicating a need for clarification.
  • Another participant provides a detailed explanation of what constitutes a generator in a cyclic group, using examples from $\Bbb{Z}_6$ and $\Bbb{Z}_8$ to illustrate the concept.
  • There is a suggestion for participants to find the generators of $\Bbb{Z}_9$, with a hint that there are six of them.
  • One participant attempts to provide calculations for elements in $\Bbb{Z}_9$, but it is unclear how this relates to the original question about generators.
  • Another participant acknowledges typos in their previous post and reiterates the explanation regarding the generator 5 in $\Bbb{Z}_6$.
  • There are additional calculations presented for elements in $\Bbb{Z}_9$, but the relevance to the discussion on generators is uncertain.

Areas of Agreement / Disagreement

Participants present multiple views on the generators of the groups discussed, with some expressing confusion about the concept. There is no consensus reached on the understanding of generators, and the discussion remains somewhat unresolved.

Contextual Notes

Some participants express uncertainty about the definitions and applications of generators, indicating potential gaps in understanding. There are also instances of typos and unclear connections between posts, which may affect the clarity of the discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{707}
$\textit{Find all generators of $\Bbb{Z}_6, \Bbb{Z}_8,$ and $\Bbb{Z}_{20}$}$
$$\begin707{align*}
\Bbb{Z}_6&\quad=6, \textit{ all generators of } \Bbb{Z}_6 \textit{ are of the form } k\cdot1=k.
where gcd(6,k)=1\\
&\quad \textit{ So } k=1,5 \textit{ and there are two generators of } \Bbb{Z}_6 1 \textit{ and }5 \\
\Bbb{Z}_8&\quad \textit{ For } k \in \Bbb{Z}_8, \gcd(8; k)=1 \textit{ iff } k=1,3,5,7. \textit{So there are four
generators.}\\
\Bbb{Z}_{20}&\quad \textit{ For } k \in \Z_{20}, \gcd(20;k)=1 \textit{ iff } k=1,3,7,9,11,13,17,19.
\textit{ They are generators of } \Bbb{Z}_{20}
\end{align*}$$

ok this is c/p answer
but I don't think I understand still what a generarator is and how it is used
 
Last edited:
Physics news on Phys.org
A generator of a cyclic group $G$ is an element $a\in G$ such that all the elements of $G$ are of the form $a^n=\underbrace{a\cdot a\cdot\cdots\cdot a}_{n\ \text{times}}$ for some non-negative integer $n$ (where $a^0$ is defined to be the identity element of $G$). In the case when $G$ is Abelian and additive notion (as in your case) the notation becomes $na=\underbrace{a+a+\cdots+a}_{n\ \text{times}}$ (with 0a being the identity).

Take for example the element $5\in\mathbb Z_6$. It is a generator because
$$0\cdot5\ =\ 0\ \equiv\ 0\pmod5 \\ 1\cdot5\ =\ 5\ \equiv\ 1\pmod5 \\ 2\cdot5\ =\ 10\ \equiv\ 4\pmod6 \\ 3\cdot5\ =\ 15\ \equiv\ 3\pmod6 \\ 4\cdot5\ =\ 20\ \equiv\ 2\pmod6 \\ 5\cdot5\ =\ 25\ \equiv\ 1\pmod6$$
which gives us all the elements of $\mathbb Z_6$. Similarly, 5 is a generator of $\mathbb Z_8$ because going through $0\cdot5,\,1\cdot5,\,2\cdot5,\,\ldots\pmod8$ gives all the elements of $\mathbb Z_8$.

But $5$ is not a generator of $\mathbb Z_{10}$ because
$$0\cdot5\ =\ 0 \\ 1\cdot5\ =\ 5\ \\ 2\cdot5\ =\ 10\ \equiv\ 0\pmod{10} \\ 3\cdot5\ =\ 15\ \equiv\ 5\pmod{10} \\ 4\cdot5\ =\ 20\ \equiv\ 0\pmod{10} \\ \qquad\vdots$$
so we don’t get all the elements of $\mathbb Z_{10}$.

In general, $a\in\mathbb Z_n$ is a generator of $\mathbb Z_n$ if and only if $\gcd(a,n)=1$. As an exercise, try and find the generators of $\mathbb Z_9$. (Hint: There are 6 of them.)
 
Last edited:
Olinguito said:
In general, $a\in\mathbb Z_n$ is a generator of $\mathbb Z_n$ if and only if $\gcd(a,n)=1$. As an exercise, try and find the generators of $\mathbb Z_9$. (Hint: There are 6 of them.)


$0\cdot2\ =\ 0\ \equiv\ 0\pmod2 \\
1\cdot2\ =\ 2\ \equiv\ 0\pmod2 \\
2\cdot2\ =\ 4\ \equiv\ 1\pmod3 \\
3\cdot2\ =\ 6 \equiv\ 2\pmod4\\
4\cdot2\ =\ 8\ \equiv\ 3\pmod5 \\
5\cdot2\ =\ 10\ \equiv\ 4\pmod6 \\
6\cdot2\ =\ 12\ \equiv\ 5\pmod7\\
7\cdot2\ =\ 14\equiv\ 6\pmod8\\
8\cdot2\ =\ 16\ \equiv\ 7\pmod9 \\
9\cdot2\ =\ 18\ \equiv\ 8\pmod10
$at least one pass
sorta or is it a derail?
 
Sorry, I made a few typos in my post above. I meant the following:
Olinguito said:

Take for example the element $5\in\mathbb Z_6$. It is a generator because
$$\color{black}0\cdot5\ =\ 0\ \equiv\ 0\pmod{\color{red}6\color{black}} \\ \color{black}1\cdot5\ =\ 5\ \equiv\ \color{red}5\color{black}\pmod{\color{red}6\color{black}} \\ 2\cdot5\ =\ 10\ \equiv\ 4\pmod6 \\ 3\cdot5\ =\ 15\ \equiv\ 3\pmod6 \\ 4\cdot5\ =\ 20\ \equiv\ 2\pmod6 \\ 5\cdot5\ =\ 25\ \equiv\ 1\pmod6$$
which gives us all the elements of $\mathbb Z_6$.
 
thusly?

$$
0\cdot8\ =\ 0\ \equiv\ 0\pmod9 \\
1\cdot8\ =\ 8\ \equiv\ 8\pmod 9 \\
2\cdot8\ =\ 16\ \equiv\ 7\pmod9 \\
3\cdot8\ =\ 24 \equiv\ 6\pmod9\\
4\cdot8\ =\ 32\ \equiv\ 5\pmod9\\
5\cdot8\ =\ 40\ \equiv\ 4\pmod9 \\
6\cdot8\ =\ 48\ \equiv\ 3\pmod9\\
7\cdot8\ =\ 56\equiv\ 2\pmod9\\
8\cdot8\ =\ 64\ \equiv\ 1\pmod9 \\
$$
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy
SSCwt.png
 

Similar threads

Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 33 ·
2
Replies
33
Views
9K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K