MHB What are the generators of $\Bbb{Z}_6, \Bbb{Z}_8,$ and $\Bbb{Z}_{20}$?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Generators
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{707}
$\textit{Find all generators of $\Bbb{Z}_6, \Bbb{Z}_8,$ and $\Bbb{Z}_{20}$}$
$$\begin707{align*}
\Bbb{Z}_6&\quad=6, \textit{ all generators of } \Bbb{Z}_6 \textit{ are of the form } k\cdot1=k.
where gcd(6,k)=1\\
&\quad \textit{ So } k=1,5 \textit{ and there are two generators of } \Bbb{Z}_6 1 \textit{ and }5 \\
\Bbb{Z}_8&\quad \textit{ For } k \in \Bbb{Z}_8, \gcd(8; k)=1 \textit{ iff } k=1,3,5,7. \textit{So there are four
generators.}\\
\Bbb{Z}_{20}&\quad \textit{ For } k \in \Z_{20}, \gcd(20;k)=1 \textit{ iff } k=1,3,7,9,11,13,17,19.
\textit{ They are generators of } \Bbb{Z}_{20}
\end{align*}$$

ok this is c/p answer
but I don't think I understand still what a generarator is and how it is used
 
Last edited:
Physics news on Phys.org
A generator of a cyclic group $G$ is an element $a\in G$ such that all the elements of $G$ are of the form $a^n=\underbrace{a\cdot a\cdot\cdots\cdot a}_{n\ \text{times}}$ for some non-negative integer $n$ (where $a^0$ is defined to be the identity element of $G$). In the case when $G$ is Abelian and additive notion (as in your case) the notation becomes $na=\underbrace{a+a+\cdots+a}_{n\ \text{times}}$ (with 0a being the identity).

Take for example the element $5\in\mathbb Z_6$. It is a generator because
$$0\cdot5\ =\ 0\ \equiv\ 0\pmod5 \\ 1\cdot5\ =\ 5\ \equiv\ 1\pmod5 \\ 2\cdot5\ =\ 10\ \equiv\ 4\pmod6 \\ 3\cdot5\ =\ 15\ \equiv\ 3\pmod6 \\ 4\cdot5\ =\ 20\ \equiv\ 2\pmod6 \\ 5\cdot5\ =\ 25\ \equiv\ 1\pmod6$$
which gives us all the elements of $\mathbb Z_6$. Similarly, 5 is a generator of $\mathbb Z_8$ because going through $0\cdot5,\,1\cdot5,\,2\cdot5,\,\ldots\pmod8$ gives all the elements of $\mathbb Z_8$.

But $5$ is not a generator of $\mathbb Z_{10}$ because
$$0\cdot5\ =\ 0 \\ 1\cdot5\ =\ 5\ \\ 2\cdot5\ =\ 10\ \equiv\ 0\pmod{10} \\ 3\cdot5\ =\ 15\ \equiv\ 5\pmod{10} \\ 4\cdot5\ =\ 20\ \equiv\ 0\pmod{10} \\ \qquad\vdots$$
so we don’t get all the elements of $\mathbb Z_{10}$.

In general, $a\in\mathbb Z_n$ is a generator of $\mathbb Z_n$ if and only if $\gcd(a,n)=1$. As an exercise, try and find the generators of $\mathbb Z_9$. (Hint: There are 6 of them.)
 
Last edited:
Olinguito said:
In general, $a\in\mathbb Z_n$ is a generator of $\mathbb Z_n$ if and only if $\gcd(a,n)=1$. As an exercise, try and find the generators of $\mathbb Z_9$. (Hint: There are 6 of them.)


$0\cdot2\ =\ 0\ \equiv\ 0\pmod2 \\
1\cdot2\ =\ 2\ \equiv\ 0\pmod2 \\
2\cdot2\ =\ 4\ \equiv\ 1\pmod3 \\
3\cdot2\ =\ 6 \equiv\ 2\pmod4\\
4\cdot2\ =\ 8\ \equiv\ 3\pmod5 \\
5\cdot2\ =\ 10\ \equiv\ 4\pmod6 \\
6\cdot2\ =\ 12\ \equiv\ 5\pmod7\\
7\cdot2\ =\ 14\equiv\ 6\pmod8\\
8\cdot2\ =\ 16\ \equiv\ 7\pmod9 \\
9\cdot2\ =\ 18\ \equiv\ 8\pmod10
$at least one pass
sorta or is it a derail?
 
Sorry, I made a few typos in my post above. I meant the following:
Olinguito said:

Take for example the element $5\in\mathbb Z_6$. It is a generator because
$$\color{black}0\cdot5\ =\ 0\ \equiv\ 0\pmod{\color{red}6\color{black}} \\ \color{black}1\cdot5\ =\ 5\ \equiv\ \color{red}5\color{black}\pmod{\color{red}6\color{black}} \\ 2\cdot5\ =\ 10\ \equiv\ 4\pmod6 \\ 3\cdot5\ =\ 15\ \equiv\ 3\pmod6 \\ 4\cdot5\ =\ 20\ \equiv\ 2\pmod6 \\ 5\cdot5\ =\ 25\ \equiv\ 1\pmod6$$
which gives us all the elements of $\mathbb Z_6$.
 
thusly?

$$
0\cdot8\ =\ 0\ \equiv\ 0\pmod9 \\
1\cdot8\ =\ 8\ \equiv\ 8\pmod 9 \\
2\cdot8\ =\ 16\ \equiv\ 7\pmod9 \\
3\cdot8\ =\ 24 \equiv\ 6\pmod9\\
4\cdot8\ =\ 32\ \equiv\ 5\pmod9\\
5\cdot8\ =\ 40\ \equiv\ 4\pmod9 \\
6\cdot8\ =\ 48\ \equiv\ 3\pmod9\\
7\cdot8\ =\ 56\equiv\ 2\pmod9\\
8\cdot8\ =\ 64\ \equiv\ 1\pmod9 \\
$$
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy
SSCwt.png
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
1K
Replies
2
Views
6K
Replies
1
Views
2K
Replies
33
Views
8K
Replies
2
Views
3K
Back
Top