MHB What are the generators of $\Bbb{Z}_6, \Bbb{Z}_8,$ and $\Bbb{Z}_{20}$?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Generators
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{707}
$\textit{Find all generators of $\Bbb{Z}_6, \Bbb{Z}_8,$ and $\Bbb{Z}_{20}$}$
$$\begin707{align*}
\Bbb{Z}_6&\quad=6, \textit{ all generators of } \Bbb{Z}_6 \textit{ are of the form } k\cdot1=k.
where gcd(6,k)=1\\
&\quad \textit{ So } k=1,5 \textit{ and there are two generators of } \Bbb{Z}_6 1 \textit{ and }5 \\
\Bbb{Z}_8&\quad \textit{ For } k \in \Bbb{Z}_8, \gcd(8; k)=1 \textit{ iff } k=1,3,5,7. \textit{So there are four
generators.}\\
\Bbb{Z}_{20}&\quad \textit{ For } k \in \Z_{20}, \gcd(20;k)=1 \textit{ iff } k=1,3,7,9,11,13,17,19.
\textit{ They are generators of } \Bbb{Z}_{20}
\end{align*}$$

ok this is c/p answer
but I don't think I understand still what a generarator is and how it is used
 
Last edited:
Physics news on Phys.org
A generator of a cyclic group $G$ is an element $a\in G$ such that all the elements of $G$ are of the form $a^n=\underbrace{a\cdot a\cdot\cdots\cdot a}_{n\ \text{times}}$ for some non-negative integer $n$ (where $a^0$ is defined to be the identity element of $G$). In the case when $G$ is Abelian and additive notion (as in your case) the notation becomes $na=\underbrace{a+a+\cdots+a}_{n\ \text{times}}$ (with 0a being the identity).

Take for example the element $5\in\mathbb Z_6$. It is a generator because
$$0\cdot5\ =\ 0\ \equiv\ 0\pmod5 \\ 1\cdot5\ =\ 5\ \equiv\ 1\pmod5 \\ 2\cdot5\ =\ 10\ \equiv\ 4\pmod6 \\ 3\cdot5\ =\ 15\ \equiv\ 3\pmod6 \\ 4\cdot5\ =\ 20\ \equiv\ 2\pmod6 \\ 5\cdot5\ =\ 25\ \equiv\ 1\pmod6$$
which gives us all the elements of $\mathbb Z_6$. Similarly, 5 is a generator of $\mathbb Z_8$ because going through $0\cdot5,\,1\cdot5,\,2\cdot5,\,\ldots\pmod8$ gives all the elements of $\mathbb Z_8$.

But $5$ is not a generator of $\mathbb Z_{10}$ because
$$0\cdot5\ =\ 0 \\ 1\cdot5\ =\ 5\ \\ 2\cdot5\ =\ 10\ \equiv\ 0\pmod{10} \\ 3\cdot5\ =\ 15\ \equiv\ 5\pmod{10} \\ 4\cdot5\ =\ 20\ \equiv\ 0\pmod{10} \\ \qquad\vdots$$
so we don’t get all the elements of $\mathbb Z_{10}$.

In general, $a\in\mathbb Z_n$ is a generator of $\mathbb Z_n$ if and only if $\gcd(a,n)=1$. As an exercise, try and find the generators of $\mathbb Z_9$. (Hint: There are 6 of them.)
 
Last edited:
Olinguito said:
In general, $a\in\mathbb Z_n$ is a generator of $\mathbb Z_n$ if and only if $\gcd(a,n)=1$. As an exercise, try and find the generators of $\mathbb Z_9$. (Hint: There are 6 of them.)


$0\cdot2\ =\ 0\ \equiv\ 0\pmod2 \\
1\cdot2\ =\ 2\ \equiv\ 0\pmod2 \\
2\cdot2\ =\ 4\ \equiv\ 1\pmod3 \\
3\cdot2\ =\ 6 \equiv\ 2\pmod4\\
4\cdot2\ =\ 8\ \equiv\ 3\pmod5 \\
5\cdot2\ =\ 10\ \equiv\ 4\pmod6 \\
6\cdot2\ =\ 12\ \equiv\ 5\pmod7\\
7\cdot2\ =\ 14\equiv\ 6\pmod8\\
8\cdot2\ =\ 16\ \equiv\ 7\pmod9 \\
9\cdot2\ =\ 18\ \equiv\ 8\pmod10
$at least one pass
sorta or is it a derail?
 
Sorry, I made a few typos in my post above. I meant the following:
Olinguito said:

Take for example the element $5\in\mathbb Z_6$. It is a generator because
$$\color{black}0\cdot5\ =\ 0\ \equiv\ 0\pmod{\color{red}6\color{black}} \\ \color{black}1\cdot5\ =\ 5\ \equiv\ \color{red}5\color{black}\pmod{\color{red}6\color{black}} \\ 2\cdot5\ =\ 10\ \equiv\ 4\pmod6 \\ 3\cdot5\ =\ 15\ \equiv\ 3\pmod6 \\ 4\cdot5\ =\ 20\ \equiv\ 2\pmod6 \\ 5\cdot5\ =\ 25\ \equiv\ 1\pmod6$$
which gives us all the elements of $\mathbb Z_6$.
 
thusly?

$$
0\cdot8\ =\ 0\ \equiv\ 0\pmod9 \\
1\cdot8\ =\ 8\ \equiv\ 8\pmod 9 \\
2\cdot8\ =\ 16\ \equiv\ 7\pmod9 \\
3\cdot8\ =\ 24 \equiv\ 6\pmod9\\
4\cdot8\ =\ 32\ \equiv\ 5\pmod9\\
5\cdot8\ =\ 40\ \equiv\ 4\pmod9 \\
6\cdot8\ =\ 48\ \equiv\ 3\pmod9\\
7\cdot8\ =\ 56\equiv\ 2\pmod9\\
8\cdot8\ =\ 64\ \equiv\ 1\pmod9 \\
$$
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy
SSCwt.png
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
11K
  • · Replies 33 ·
2
Replies
33
Views
9K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K