What are the implied domain and range of cos(arctan(x))?

AI Thread Summary
The discussion centers on determining the implied domain and range of the composite function cos(arctan(x)). The domain is established as [0, ∞) because arctan(x) outputs values in the interval (-π/2, π/2), while the range of cos(arctan(x)) excludes 0 due to the exclusion of π/2 from the domain of arctan. The graph of y = cos(arctan(x)) peaks at y = 1 when x = 0 and approaches zero as x approaches ±∞. Participants clarify that to find the implied domain of a composite function, one must consider the inverse image of the outer function. The conversation concludes with agreement on the exclusion of 0 from the range based on the properties of the arctan function.
Darkmisc
Messages
222
Reaction score
31
Homework Statement
The domain of cos is restricted to [0, pi]. What is the implied domain and range of cos(tan^-1(x))?
Relevant Equations
y=cos(tan^-1(x))?
Hi everyone

I have the solution to this question, but I'm not sure I understand it.

1674111199416.png


image_2023-01-19_174256922.png


1674110596820.png

Why is the domain of the composite function
image_2023-01-19_174415215.png
and not [0, pi]?

Is it because tan^-1 (0 and R+) will always give a value between (-pi/2, pi/2)? I.e. the domain of the composite function refers to x.

Is 0 excluded from the range of the composite function because pi/2 is excluded from the domain of tan^-1?

Thanks
 
Physics news on Phys.org
I observe graph of
y=\cos(\arctan x)
shows peak y=1 at x=0 and going down to zero for both plus and minus x. x=##\pm \infty## correspond with arctan x=##\pm \pi/2##. It should be adjusted if we apply [0,##\pi##) for x. Isn't it enough ?
 
Last edited:
To find the implied domain of a composite function we need to consider the inverse image of the outer function. So we If we want 0<arctan(x)<pi we must have 0<=x as the domain. Next we consider values of cos(arctan(x)) that are possible. That will be the range. 0 excluded from the range of the composite function because pi/2 is excluded from the range of tan^-1. Yes, tan^-1 ({0} U R+) will always give a value in (-pi/2, pi/2) in fact in [0, pi/2) require that arctan be in [0, pi] due to the restriction of cos.
 
Darkmisc said:
I have the solution to this question, but I'm not sure I understand it.
I think you do :smile:

Darkmisc said:
Why is the domain of the composite functionView attachment 320662 and not [0, pi]?
Please don't use images, write ## \mathbb R^+ \cup \{0\} ##, or the less clunky ## [0, \infty) ##.

Darkmisc said:
Is it because tan^-1 (0 and R+) will always give a value between (-pi/2, pi/2)?
Yes.

Darkmisc said:
Is 0 excluded from the range of the composite function because pi/2 is excluded from the domain of tan^-1?
Yes.
 
Back
Top