What Are the Maximum and Minimum Values of P Given the Equation?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum Minimum
Click For Summary
SUMMARY

The discussion focuses on finding the minimum and maximum values of the expression \( P = \frac{y - x}{x + 8y} \) under the constraint defined by the equation \( y^2(6 - x^2) - xy - 1 = 0 \). Participants confirm the validity of their solutions and encourage sharing alternative methods for solving the problem. The mathematical approach involves analyzing the relationship between \( x \) and \( y \) as dictated by the quadratic equation.

PREREQUISITES
  • Understanding of quadratic equations and their properties
  • Familiarity with optimization techniques in calculus
  • Knowledge of rational functions and their behavior
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Explore methods for solving quadratic equations, particularly in two variables
  • Learn about optimization techniques for rational functions
  • Study the properties of limits and continuity in relation to rational expressions
  • Investigate graphical methods for visualizing the relationship between \( x \) and \( y \)
USEFUL FOR

Mathematicians, students studying calculus and algebra, and anyone interested in optimization problems involving rational functions and quadratic constraints.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum and maximum of $P=\dfrac{y−x}{x+8y}$ for all real $x$ and $y$ that satisfy the equation $y^2(6-x^2)-xy-1=0$.
 
Physics news on Phys.org
Hint:

If you're fond of using the AM-GM inequality method (when applicable) to solve for optimization problem, then you could try to express $P$ in terms of $xy$.
 
anemone said:
Hint:

If you're fond of using the AM-GM inequality method (when applicable) to solve for optimization problem, then you could try to express $P$ in terms of $xy$.
$max(P)=\dfrac {7}{2},\,\, xy=-1$
$min(P)=\dfrac {-1}{10},\, xy=1$
 
Last edited:
Yes, those are the correct answers, Albert. If your method of solving is different than mine, I hope you could post it to share it with me and MHB. Thanks. :)

Here is my solution:
$\begin{align*}P&=\dfrac{y−x}{x+8y}\\&=\dfrac{y(y−x)}{y(x+8y)}\\&=\dfrac{y^2−xy}{xy+8y^2}\\&=\dfrac{\dfrac{x^2y^2+xy+1}{6}−xy}{xy+8\left(\dfrac{x^2y^2+xy+1}{6}\right)}\\&=\dfrac{x^2y^2+xy+1-6xy}{6xy+8x^2y^2+8xy+8}\\&=\dfrac{x^2y^2-5xy+1}{8x^2y^2+14xy+8}\\&=\dfrac{x^2y^2-5xy+1}{8(x^2y^2+\dfrac{14xy}{8}+1)}\\&=\dfrac{1}{8}\left(1-\dfrac{27xy}{4(x^2y^2+\dfrac{14xy}{8}+1)}\right)\\&=\dfrac{1}{8}\left(1-\dfrac{27}{4(\dfrac{14}{8}+xy+\dfrac{1}{xy})}\right)\end{align*}$

If $xy\gt 0$, we get $P_{\text{minimum}}=\dfrac{1}{8}\left(1-\dfrac{27}{4(\dfrac{14}{8}+2)}\right)=-\dfrac{1}{10}$.

If $xy\lt 0$, then we need to rewrite $P$ such that it takes the form:

$\begin{align*}P&=\dfrac{1}{8}\left(1-\dfrac{27}{4(\dfrac{14}{8}+xy+\dfrac{1}{xy})}\right)\\&=\dfrac{1}{8}\left(1-\dfrac{27}{4(\dfrac{14}{8}-|xy|-\dfrac{1}{|xy|})}\right)\\&=\dfrac{1}{8}\left(1+\dfrac{27}{4\left(|xy|+\dfrac{1}{|xy|}-\dfrac{14}{8}\right)}\right)\end{align*}$

Thus $P_{\text{maximum}}=\dfrac{1}{8}\left(1+\dfrac{27}{4\left(2-\dfrac{14}{8}\right)}\right)=\dfrac{7}{2}$.
 
Albert said:
$max(P)=\dfrac {7}{2},\,\, xy=-1$
$min(P)=\dfrac {-1}{10},\, xy=1$
my solution:
let $k=xy$
$p=\dfrac {k^2-5k+1}{8k^2+14k+8}$ (up to now the solution is similar to anemone's method)
if $k>0 $ then :
$P\geq \dfrac{2k-5k}{8k^2+14k+8}=\dfrac {-3k}{8k^2+14k+8}=\dfrac {-1}{10}$ equality holds when $k=xy=1$
if $k<0 $ then :
$P\leq \dfrac{k^2-5k+1}{14k-16k}=\dfrac {k^2-5k+1}{-2k}=\dfrac {7}{2}$ equality holds when $k=xy=-1$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K