MHB What Are the Minimal Polynomials of Matrix Powers?

Click For Summary
SUMMARY

The minimal polynomial of the matrix $A \in M_n(\mathbb{C})$ is given as $m_A(x)=(x^2+1)(x^2-1)$. The minimal polynomials for the matrices $A^2$ and $A^3$ are determined to be $m_{A^2}(x)=x^2-1$ and $m_{A^3}(x)=(x^2+1)(x^2-1)$, respectively. This conclusion is derived from the relationship between the eigenvalues of a matrix and its powers, where the eigenvalues of $A^2$ are $\{-1, 1\}$ and those of $A^3$ are $\{-i, i, -1, 1\}$.

PREREQUISITES
  • Understanding of minimal polynomials in linear algebra
  • Knowledge of eigenvalues and eigenvectors
  • Familiarity with matrix operations and powers
  • Basic concepts of complex numbers
NEXT STEPS
  • Study the properties of minimal polynomials in linear algebra
  • Learn about the relationship between eigenvalues and matrix powers
  • Explore the Cayley-Hamilton theorem and its implications
  • Investigate the implications of complex eigenvalues on matrix behavior
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on linear algebra, matrix theory, and eigenvalue analysis.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

If the matrix $A \in M_n(\mathbb{C})$ has $m_A(x)=(x^2+1)(x^2-1)$ as its minimal polynomial, then I want to find the minimal polynomials of the matrices $A^2$ and $A^3$.

($M_n(k)$=the $n \times n$ matrices with elements over the field $k=\mathbb{R}$ or $k=\mathbb{C}$)

Is there a relation that connects the minimal polynomial of a matrix $B$ with the minimal polynomial of the powers of $B$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

If the matrix $A \in M_n(\mathbb{C})$ has $m_A(x)=(x^2+1)(x^2-1)$ as its minimal polynomial, then I want to find the minimal polynomials of the matrices $A^2$ and $A^3$.

($M_n(k)$=the $n \times n$ matrices with elements over the field $k=\mathbb{R}$ or $k=\mathbb{C}$)

Is there a relation that connects the minimal polynomial of a matrix $B$ with the minimal polynomial of the powers of $B$ ? (Thinking)

Hey evinda! (Wave)

Don't we have that $\lambda$ is an eigenvalue of $A$ iff $\lambda$ is a root of the minimal polynomial?

Now suppose $\lambda$ is an eigenvalue of $A$ with eigenvector $\mathbf v$.
Then what can we say about $A^2\mathbf v$? (Wondering)
 
I like Serena said:
Hey evinda! (Wave)

Don't we have that $\lambda$ is an eigenvalue of $A$ iff $\lambda$ is a root of the minimal polynomial?

(Nod)
I like Serena said:
Now suppose $\lambda$ is an eigenvalue of $A$ with eigenvector $\mathbf v$.
Then what can we say about $A^2\mathbf v$? (Wondering)
$A^2\mathbf v= A(A \mathbf v)=A(\lambda \mathbf v)=\lambda(A \mathbf v)=\lambda(\lambda \mathbf{v})=\lambda^2 \mathbf v$

and

$A^3 \mathbf v=A(A^2 \mathbf v)=A(\lambda^2 \mathbf v)=\lambda^2(A \mathbf v)=\lambda^3 \mathbf v$.

So the eigenvalues of $A^2$ are $\lambda^2$ and the eigenvalues of $A^3$ are $\lambda^3$.

In our case, the eigenvalues of $A$ are $\pm i$ and $\pm 1$.

Thus the eigenvalues of $A^2$ are $-1,1$ and the eigenvalues of $A^3$ are $-i, i, -1,1$.

So the minimal polynomials of $A^2$ and $A^3$ are $(x+1)(x-1)=x^2-1$ and $(x+i)(x-i)(x+1)(x-1)=(x^2+1)(x^2-1)$,respectively.

Right? (Thinking)
 
evinda said:
(Nod)

$A^2\mathbf v= A(A \mathbf v)=A(\lambda \mathbf v)=\lambda(A \mathbf v)=\lambda(\lambda \mathbf{v})=\lambda^2 \mathbf v$

and

$A^3 \mathbf v=A(A^2 \mathbf v)=A(\lambda^2 \mathbf v)=\lambda^2(A \mathbf v)=\lambda^3 \mathbf v$.

So the eigenvalues of $A^2$ are $\lambda^2$ and the eigenvalues of $A^3$ are $\lambda^3$.

In our case, the eigenvalues of $A$ are $\pm i$ and $\pm 1$.

Thus the eigenvalues of $A^2$ are $-1,1$ and the eigenvalues of $A^3$ are $-i, i, -1,1$.

So the minimal polynomials of $A^2$ and $A^3$ are $(x+1)(x-1)=x^2-1$ and $(x+i)(x-i)(x+1)(x-1)=(x^2+1)(x^2-1)$,respectively.

Right?

Right! (Nod)
 
I like Serena said:
Right! (Nod)

Nice... Thanks a lot! (Happy)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
12
Views
3K
  • · Replies 24 ·
Replies
24
Views
910
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K