What Are the Minimal Polynomials of Matrix Powers?

Click For Summary

Discussion Overview

The discussion revolves around finding the minimal polynomials of the matrices $A^2$ and $A^3$ given that the minimal polynomial of matrix $A$ is $m_A(x)=(x^2+1)(x^2-1)$. Participants explore the relationship between the minimal polynomial of a matrix and the minimal polynomials of its powers, engaging in reasoning about eigenvalues and their implications.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • Some participants assert that an eigenvalue $\lambda$ of matrix $A$ is a root of the minimal polynomial.
  • It is proposed that if $\lambda$ is an eigenvalue of $A$ with eigenvector $\mathbf v$, then $A^2\mathbf v = \lambda^2 \mathbf v$ and $A^3 \mathbf v = \lambda^3 \mathbf v$.
  • From the eigenvalues of $A$, which are $\pm i$ and $\pm 1$, it is concluded that the eigenvalues of $A^2$ are $-1$ and $1$, while the eigenvalues of $A^3$ are $-i$, $i$, $-1$, and $1$.
  • Participants derive that the minimal polynomial of $A^2$ is $(x+1)(x-1)=x^2-1$ and that of $A^3$ is $(x+i)(x-i)(x+1)(x-1)=(x^2+1)(x^2-1)$.

Areas of Agreement / Disagreement

Participants generally agree on the eigenvalue relationships and the derived minimal polynomials for $A^2$ and $A^3$, although the discussion does not explicitly resolve all potential nuances regarding the derivation process.

Contextual Notes

The discussion does not address potential limitations or assumptions regarding the definitions of minimal polynomials or the specific properties of the matrices involved.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

If the matrix $A \in M_n(\mathbb{C})$ has $m_A(x)=(x^2+1)(x^2-1)$ as its minimal polynomial, then I want to find the minimal polynomials of the matrices $A^2$ and $A^3$.

($M_n(k)$=the $n \times n$ matrices with elements over the field $k=\mathbb{R}$ or $k=\mathbb{C}$)

Is there a relation that connects the minimal polynomial of a matrix $B$ with the minimal polynomial of the powers of $B$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

If the matrix $A \in M_n(\mathbb{C})$ has $m_A(x)=(x^2+1)(x^2-1)$ as its minimal polynomial, then I want to find the minimal polynomials of the matrices $A^2$ and $A^3$.

($M_n(k)$=the $n \times n$ matrices with elements over the field $k=\mathbb{R}$ or $k=\mathbb{C}$)

Is there a relation that connects the minimal polynomial of a matrix $B$ with the minimal polynomial of the powers of $B$ ? (Thinking)

Hey evinda! (Wave)

Don't we have that $\lambda$ is an eigenvalue of $A$ iff $\lambda$ is a root of the minimal polynomial?

Now suppose $\lambda$ is an eigenvalue of $A$ with eigenvector $\mathbf v$.
Then what can we say about $A^2\mathbf v$? (Wondering)
 
I like Serena said:
Hey evinda! (Wave)

Don't we have that $\lambda$ is an eigenvalue of $A$ iff $\lambda$ is a root of the minimal polynomial?

(Nod)
I like Serena said:
Now suppose $\lambda$ is an eigenvalue of $A$ with eigenvector $\mathbf v$.
Then what can we say about $A^2\mathbf v$? (Wondering)
$A^2\mathbf v= A(A \mathbf v)=A(\lambda \mathbf v)=\lambda(A \mathbf v)=\lambda(\lambda \mathbf{v})=\lambda^2 \mathbf v$

and

$A^3 \mathbf v=A(A^2 \mathbf v)=A(\lambda^2 \mathbf v)=\lambda^2(A \mathbf v)=\lambda^3 \mathbf v$.

So the eigenvalues of $A^2$ are $\lambda^2$ and the eigenvalues of $A^3$ are $\lambda^3$.

In our case, the eigenvalues of $A$ are $\pm i$ and $\pm 1$.

Thus the eigenvalues of $A^2$ are $-1,1$ and the eigenvalues of $A^3$ are $-i, i, -1,1$.

So the minimal polynomials of $A^2$ and $A^3$ are $(x+1)(x-1)=x^2-1$ and $(x+i)(x-i)(x+1)(x-1)=(x^2+1)(x^2-1)$,respectively.

Right? (Thinking)
 
evinda said:
(Nod)

$A^2\mathbf v= A(A \mathbf v)=A(\lambda \mathbf v)=\lambda(A \mathbf v)=\lambda(\lambda \mathbf{v})=\lambda^2 \mathbf v$

and

$A^3 \mathbf v=A(A^2 \mathbf v)=A(\lambda^2 \mathbf v)=\lambda^2(A \mathbf v)=\lambda^3 \mathbf v$.

So the eigenvalues of $A^2$ are $\lambda^2$ and the eigenvalues of $A^3$ are $\lambda^3$.

In our case, the eigenvalues of $A$ are $\pm i$ and $\pm 1$.

Thus the eigenvalues of $A^2$ are $-1,1$ and the eigenvalues of $A^3$ are $-i, i, -1,1$.

So the minimal polynomials of $A^2$ and $A^3$ are $(x+1)(x-1)=x^2-1$ and $(x+i)(x-i)(x+1)(x-1)=(x^2+1)(x^2-1)$,respectively.

Right?

Right! (Nod)
 
I like Serena said:
Right! (Nod)

Nice... Thanks a lot! (Happy)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
12
Views
3K
  • · Replies 24 ·
Replies
24
Views
1K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K