MHB What are the positive values for a in the equation a^x=x+2?

  • Thread starter Thread starter Vali
  • Start date Start date
Vali
Messages
48
Reaction score
0
Sorry for posting again but I need to prepare for exam.
a^x=x+2 has two real solutions.I need to find positive values for "a".
A) (1, infinity)
B) (0,1)
C) (1/e , e)
D) (1/(e^e), e^e)
E) (e^(1/e), infinity)
I tried to solve and I did it but I don't understand some things.
I let a picture below to see.
First, I need to know if there's other way to solve this kind of exercise.I would be happy if I would get some ideas.
Also, from my solution, I don't understand why from that table results just one solution and from the graphic results two solutions.Usually, to see the number of solutions I use this kind of table.
For a>1 f decrease from infinity to -1, then increase from -1 to infinity.I'm really confused.Need some indications here.
Thank you!
 

Attachments

  • expo.jpg
    expo.jpg
    42.5 KB · Views: 107
Last edited:
Mathematics news on Phys.org
I would begin with:

$$f(x)=a^x-x-2$$

Hence, let's examine:

$$f'(x)=a^x\ln(a)-1$$

$$f''(x)=a^x\ln^2(a)$$

Now, in order for \(f(x)\) to have 2 roots, we require upward concavity, that is we require:

$$f''(x)<0$$

Can you finish?
 
Hi Vali,

You have a mistake for $a<1$ where you took the example $a=-e$.
Admittedly $-e < 1$, but $a^x$ is not defined for negative $a$.
So we should pick $0<a<1$. We can pick for instance $a=\frac 1e$ so that we get $a^x=(\frac 1e)^x = e^{-x}$.

To understand better what's going on, let's draw a couple of graphs.

\begin{tikzpicture}[scale=0.6]
\begin{scope}
\draw[help lines] (-4,-2) grid (4,5);
\draw[<->] (-4.4,0) -- (4.4,0) node
{$x$};
\draw[<->] (0,-2.2) -- (0,5.2) node[above] {$y$};
\draw foreach \i in {-4,-3,-2,-1,1,2,3,4} { (\i,0.1) -- (\i,-0.1) node[below] {$\i$} };
\draw foreach \i in {-2,-1,1,2,3,4,5} { (0.1,\i) -- (-0.1,\i) node
{$\i$} };
\draw[domain=-4:2.2, variable=\x, red, ultra thick] plot ({\x}, {(\x+2)}) node
{$y=x+2$};
\draw[domain=-4:1.6, variable=\x, blue, ultra thick] plot ({\x}, {exp(\x)}) node
{$y=a^x, a>1$};
\end{scope}
\begin{scope}[xshift=10cm]
\draw[help lines] (-4,-2) grid (4,5);
\draw[<->] (-4.4,0) -- (4.4,0) node
{$x$};
\draw[<->] (0,-2.2) -- (0,5.2) node[above] {$y$};
\draw foreach \i in {-4,-3,-2,-1,1,2,3,4} { (\i,0.1) -- (\i,-0.1) node[below] {$\i$} };
\draw foreach \i in {-2,-1,1,2,3,4,5} { (0.1,\i) -- (-0.1,\i) node
{$\i$} };
\draw[domain=-4:2.2, variable=\x, red, ultra thick] plot ({\x}, {(\x+2)}) node[above] {$y=x+2$};
\draw[domain=-4:3, variable=\x, blue, ultra thick] plot ({\x}, {1}) node[above] {$y=a^x, a=1$};
\end{scope}
\begin{scope}[xshift=20cm]
\draw[help lines] (-4,-2) grid (4,5);
\draw[<->] (-4.4,0) -- (4.4,0) node
{$x$};
\draw[<->] (0,-2.2) -- (0,5.2) node[above] {$y$};
\draw foreach \i in {-4,-3,-2,-1,1,2,3,4} { (\i,0.1) -- (\i,-0.1) node[below] {$\i$} };
\draw foreach \i in {-2,-1,1,2,3,4,5} { (0.1,\i) -- (-0.1,\i) node
{$\i$} };
\draw[domain=-4:2.2, variable=\x, red, ultra thick] plot ({\x}, {(\x+2)}) node
{$y=x+2$};
\draw[domain=-1.6:3, variable=\x, blue, ultra thick] plot ({\x}, {exp(-\x)}) node[above right] {$y=a^x, 0<a<1$};
\end{scope}
\end{tikzpicture}

Note that the line $y=x+2$ intersects the y-axis at $2$, which is always above the $1$ where $y=a^x$ intersects the y-axis.
The cases are:
  • For $a>1$, the graph of $y=a^x$ always slopes upwards exponentially so that it will always overtake the line.
    In other words, we always have 2 intersection points.
  • For $a=1$ we have indeed always 1 intersection point as we have 2 intersecting lines.
  • For $0<a<1$ we also have always 1 intersection point since the graphs have opposite slopes.
    As you can see, this is different from what you had, as $a$ must be positive for a proper definition of $a^x$.
  • For $a=0$ (not drawn) $a^x$ is only defined for positive $x$ where it is $0$, so no intersection points.
    We can't divide by $0$ after all.
  • For $a<0$ the expression $a^x$ is undefined for real $x$. We can't take roots (at e.g. $x=\frac 12$) of negative numbers after all.
I hope this clarifies a bit and gives you a different way to look at the problem! ;)​
 
Thank you for your help!I understood.

I try to understand the method with second derivative.
f''(x) < 0 has no solution for x real.
 
By the way, letting y= x+ 2, the equation becomes

[math]a^{y-2}= a^{-2}a^y= a^{-2}e^{ln(a^y)}= a^{-2}e^{yln(a)}= y[/math].

Letting z= y ln(a), a^{-2}e^{z}= \frac{z}{ln(a)}. ze^{-z}= a^{-2}ln(a). Finally, letting u= -z, ue^u= -a^{-2}ln(a). Then u= W(-a^{-2}ln(a)) where W is "Lambert's W function", the inverse to f(x)= xe^x.

Then z= -W(-a^{-2}ln(a)), y= -\frac{W(-a^{-2}ln(a))}{ln(a)}, x= -\frac{W(-a^{-2}ln(a))}{ln(a)}- 2.

Of course, since the W function can be multivalued, that does not answer the original question!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top