MHB What are the possible integers for which a given expression is an integer?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Positive
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all possible integers $n$ for which $\dfrac{n^2+1}{\lfloor{\sqrt{n}}\rfloor^2+2}$ is an integer.
 
Mathematics news on Phys.org
Let $m=\lfloor n \rfloor$ and $a=n-m^2$. We have $m\ge 1$ since $n\ge 1$. From $n^2+1=(m^2+a)^2+1 \equiv (a-2)^2+1 \pmod {(m^2+2)}$, it follows that the condition of the problem is equivalent to the fact that $(a-2)^2+1$ is divisible by $m^2+2$. Since we have

$0<(a-2)^2+1\le max{2^2,\,(2m-2)^2}+1\le 4m^2+1<4(m^2+2)$,

we see that $(a-2)^2+1=k(m^2+2)$ must hold with $k=1,\,2$ or $3$. We will show that none of these can occur.

Case 1: When $k=1$.

We get $(a-2)^2-m^2=1$ and this implies that $a-2=\pm 1$, $m=0$ must hold, but this contradicts with fact $m\ge 1$.

Case 2: When $k=2$.

We get $(a-2)^2+1=2(m^2+2)$ in this case, but any perfect square is congruent to 0, 1, 4 mod 8 and therefore we have $(a-2)^2+1\equiv 1,\,2,\, 5 \pmod {8}$ while $2(m^2+2)\equiv 4,\,6 \pmod {8}$. Thus, this case cannot occur either.

Case 3: When $k=3$.

We get $(a-2)^2+1=3(m^2+2)$ in this case. Since any perfect square is congruent to 0 or 1 mod 3, we have $(a-2)^2+1\equiv 1,\,2 \pmod {3}$ while $3(m^2+2)\equiv 0 \pmod {8}$, which shows that this case cannot occur either. And then we are done with the proof.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
13
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K