MHB What are the possible integers for which a given expression is an integer?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Positive
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all possible integers $n$ for which $\dfrac{n^2+1}{\lfloor{\sqrt{n}}\rfloor^2+2}$ is an integer.
 
Mathematics news on Phys.org
Let $m=\lfloor n \rfloor$ and $a=n-m^2$. We have $m\ge 1$ since $n\ge 1$. From $n^2+1=(m^2+a)^2+1 \equiv (a-2)^2+1 \pmod {(m^2+2)}$, it follows that the condition of the problem is equivalent to the fact that $(a-2)^2+1$ is divisible by $m^2+2$. Since we have

$0<(a-2)^2+1\le max{2^2,\,(2m-2)^2}+1\le 4m^2+1<4(m^2+2)$,

we see that $(a-2)^2+1=k(m^2+2)$ must hold with $k=1,\,2$ or $3$. We will show that none of these can occur.

Case 1: When $k=1$.

We get $(a-2)^2-m^2=1$ and this implies that $a-2=\pm 1$, $m=0$ must hold, but this contradicts with fact $m\ge 1$.

Case 2: When $k=2$.

We get $(a-2)^2+1=2(m^2+2)$ in this case, but any perfect square is congruent to 0, 1, 4 mod 8 and therefore we have $(a-2)^2+1\equiv 1,\,2,\, 5 \pmod {8}$ while $2(m^2+2)\equiv 4,\,6 \pmod {8}$. Thus, this case cannot occur either.

Case 3: When $k=3$.

We get $(a-2)^2+1=3(m^2+2)$ in this case. Since any perfect square is congruent to 0 or 1 mod 3, we have $(a-2)^2+1\equiv 1,\,2 \pmod {3}$ while $3(m^2+2)\equiv 0 \pmod {8}$, which shows that this case cannot occur either. And then we are done with the proof.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top