MHB What Are the Solutions to the Equation \(x^2 + 2i = 0\)?

Click For Summary
The equation \(x^2 + 2i = 0\) can be solved using various methods, all leading to the same solutions. The trigonometric form yields \(x = \pm(1-i)\) by expressing \(-2i\) in polar coordinates. Another approach involves expanding \(x = x_1 + x_2i\) and equating real and imaginary parts, also resulting in \(x = \pm(1-i)\). A straightforward inspection confirms that \((1-i)^2 = -2i\), validating the solutions. Ultimately, the solutions to the equation are \(x = 1-i\) and \(x = -1+i\).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$${x}^{2}+2i=0$$
$$\left(x-? \right)\left(x-? \right)=0$$
This should be easy but I couldn't get the factor
 
Mathematics news on Phys.org
First way. Using trigonometric form :
$$x^2=-2i\Leftrightarrow x=\sqrt{-2i}=\sqrt{2[\cos 3\pi/2+i\sin 3\pi/2]}=\ldots= \pm (1-i).$$
Second way. Using the definition of square root. If $x=x_1+x_2i$ with $x_1,x_2\in\mathbb{R},$ then
$$x^2=-2i\Leftrightarrow (x_1+x_2i)^2=-2i\Leftrightarrow x_1^2+2x_1x_2 i-x_2^2=-2i$$ $$\Leftrightarrow \left \{ \begin{matrix} \displaystyle\begin{aligned} & x_1^2-x_2^2=0\\& 2x_1x_2=-2 \end{aligned}\end{matrix}\right.\Leftrightarrow \ldots\Leftrightarrow \left \{ \begin{matrix} \displaystyle\begin{aligned} & x_1=1,\;x_2=-1\\& x_1=-1,\;x_2=1 \end{aligned}\end{matrix}\right.\Leftrightarrow x=\pm(1-i).$$
Third way. By simple inspection $(1-i)^2=1-2i-1=-2i$ so, also $[-(1-i)]^2=-2i.$

That is, $x^2+2i=[x-(1-i)][x-(-1+i)].$
 
Last edited:
I like the 3rd way

But looks like next problem is trig form
 
karush said:
I like the 3rd way
So do I. :)
But looks like next problem is trig form
In that sense, I can't help you. :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K