MHB What Are the Solutions to the Equation \(x^2 + 2i = 0\)?

AI Thread Summary
The equation \(x^2 + 2i = 0\) can be solved using various methods, all leading to the same solutions. The trigonometric form yields \(x = \pm(1-i)\) by expressing \(-2i\) in polar coordinates. Another approach involves expanding \(x = x_1 + x_2i\) and equating real and imaginary parts, also resulting in \(x = \pm(1-i)\). A straightforward inspection confirms that \((1-i)^2 = -2i\), validating the solutions. Ultimately, the solutions to the equation are \(x = 1-i\) and \(x = -1+i\).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$${x}^{2}+2i=0$$
$$\left(x-? \right)\left(x-? \right)=0$$
This should be easy but I couldn't get the factor
 
Mathematics news on Phys.org
First way. Using trigonometric form :
$$x^2=-2i\Leftrightarrow x=\sqrt{-2i}=\sqrt{2[\cos 3\pi/2+i\sin 3\pi/2]}=\ldots= \pm (1-i).$$
Second way. Using the definition of square root. If $x=x_1+x_2i$ with $x_1,x_2\in\mathbb{R},$ then
$$x^2=-2i\Leftrightarrow (x_1+x_2i)^2=-2i\Leftrightarrow x_1^2+2x_1x_2 i-x_2^2=-2i$$ $$\Leftrightarrow \left \{ \begin{matrix} \displaystyle\begin{aligned} & x_1^2-x_2^2=0\\& 2x_1x_2=-2 \end{aligned}\end{matrix}\right.\Leftrightarrow \ldots\Leftrightarrow \left \{ \begin{matrix} \displaystyle\begin{aligned} & x_1=1,\;x_2=-1\\& x_1=-1,\;x_2=1 \end{aligned}\end{matrix}\right.\Leftrightarrow x=\pm(1-i).$$
Third way. By simple inspection $(1-i)^2=1-2i-1=-2i$ so, also $[-(1-i)]^2=-2i.$

That is, $x^2+2i=[x-(1-i)][x-(-1+i)].$
 
Last edited:
I like the 3rd way

But looks like next problem is trig form
 
karush said:
I like the 3rd way
So do I. :)
But looks like next problem is trig form
In that sense, I can't help you. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top