MHB What Are the Solutions to the Equation \(x^2 + 2i = 0\)?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$${x}^{2}+2i=0$$
$$\left(x-? \right)\left(x-? \right)=0$$
This should be easy but I couldn't get the factor
 
Mathematics news on Phys.org
First way. Using trigonometric form :
$$x^2=-2i\Leftrightarrow x=\sqrt{-2i}=\sqrt{2[\cos 3\pi/2+i\sin 3\pi/2]}=\ldots= \pm (1-i).$$
Second way. Using the definition of square root. If $x=x_1+x_2i$ with $x_1,x_2\in\mathbb{R},$ then
$$x^2=-2i\Leftrightarrow (x_1+x_2i)^2=-2i\Leftrightarrow x_1^2+2x_1x_2 i-x_2^2=-2i$$ $$\Leftrightarrow \left \{ \begin{matrix} \displaystyle\begin{aligned} & x_1^2-x_2^2=0\\& 2x_1x_2=-2 \end{aligned}\end{matrix}\right.\Leftrightarrow \ldots\Leftrightarrow \left \{ \begin{matrix} \displaystyle\begin{aligned} & x_1=1,\;x_2=-1\\& x_1=-1,\;x_2=1 \end{aligned}\end{matrix}\right.\Leftrightarrow x=\pm(1-i).$$
Third way. By simple inspection $(1-i)^2=1-2i-1=-2i$ so, also $[-(1-i)]^2=-2i.$

That is, $x^2+2i=[x-(1-i)][x-(-1+i)].$
 
Last edited:
I like the 3rd way

But looks like next problem is trig form
 
karush said:
I like the 3rd way
So do I. :)
But looks like next problem is trig form
In that sense, I can't help you. :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top