MHB What caused the wrong answer for determining the center and radius of Circle 2?

AI Thread Summary
The discussion focuses on determining the center and radius of a circle from the equation 3x^2 + 3y^2 + 5x - 4y = 1. A computation error was identified in the right side of the equation, where 1/3 should replace 1/4, affecting the calculation of the radius. The correct center is established as (-5/6, 2/3), while the radius is recalculated to be sqrt(53)/6 instead of the initially proposed value. Participants emphasize the importance of understanding the procedure over simply obtaining the correct answer. The discussion highlights the significance of careful computation in solving geometric problems.
mathdad
Messages
1,280
Reaction score
0
Determine the center and radius of circle.

View attachment 7463
 

Attachments

  • MathMagic171103_2.png
    MathMagic171103_2.png
    8.4 KB · Views: 108
Last edited by a moderator:
Mathematics news on Phys.org
Why not continue and find out?

Doing so will give you experience, and experience will allow you to answer these sorts of question for yourself in future situations.
 

3x^2 + 3y^2 + 5x - 4y = 1

3x^2 + 5x + 3y^2 - 4y = 1

x^2 + (5/3)x + y^2 -(4/3)y = 1/4

Half of (5/3) is (5/6). Then (5/6)^2 = (25/36).

Half of -(4/3) is -(2/3). Then (-2/3)^2 = (4/9).

We add (25/36) and (4/9) on both sides of the equation.

x^2 + (5/3)x + (25/36) + y^2 -(4/3)y + (4/9) = (1/4) + (25/36) + (4/9)

Factor left side and calculate the right side.

(x + 5/6)(x + 5/6) + (y - 2/3)(y - 2/3) = (25/18)

(x + 5/6)^2 + (y - 2/3)^2 = (25/18)

The center is (h, k) = (-5/6, 2/3).

Let r = radius

r^2 = (25/18)

sqrt{r^2} = sqrt{25/18}

r = [5•sqrt{2}]/6

Is this correct?
 
RTCNTC said:
3x^2 + 3y^2 + 5x - 4y = 1

3x^2 + 5x + 3y^2 - 4y = 1

x^2 + (5/3)x + y^2 -(4/3)y = 1/4
= 1/3, not 1/4.

Half of (5/3) is (5/6). Then (5/6)^2 = (25/36).

Half of -(4/3) is -(2/3). Then (-2/3)^2 = (4/9).

We add (25/36) and (4/9) on both sides of the equation.

x^2 + (5/3)x + (25/36) + y^2 -(4/3)y + (4/9) = (1/4) + (25/36) + (4/9)
Again, the right side should be 1/3+ 25/36+ 4/9. 1/3, not 1/4.

Factor left side and calculate the right side.

(x + 5/6)(x + 5/6) + (y - 2/3)(y - 2/3) = (25/18)

(x + 5/6)^2 + (y - 2/3)^2 = (25/18)
1/3+ 25/36+ 4/9= 12/36+ 25/36+ 16/36= 53/36
The center is (h, k) = (-5/6, 2/3).

Let r = radius

r^2 = (25/18)

sqrt{r^2} = sqrt{25/18}

r = [5•sqrt{2}]/6

Is this correct?
Not the radius. The radius is sqrt(53}/6.
 
On the right side, I should have 1/3, as you said, not 1/4. Simple computation error that led to the wrong answer. Overall, I understand the procedure which is more important.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
5
Views
2K
Replies
9
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
6
Views
1K
Replies
16
Views
2K
Back
Top