center o bass
- 545
- 2
Hi I'm a bit confused about what actually define the components of a form. I just saw an argument where one found that
\underline{d \omega}^\rho (\vec e_\mu \wedge e_\nu) = - c_{\mu \nu}^\rho
and then the author wrote that this implied that
\underline{d \omega}^\rho = - \frac{1}2 c_{\mu \nu}^\rho \underline{\omega}^\mu \wedge \underline{\omega}^\nu
so if the components of a p-form is defined as
\underline{\alpha} = \frac{1}{p!} \alpha_{\mu_1 \ldots \mu_p} \underline{\omega}^{\mu_1} \wedge \ldots \wedge \underline{\omega}^{\mu_p}
where \alpha_{\mu_1 \ldots \mu_p} are the components, it seems the argument above implies that one can find these by applying the p-form to the basis p-vectors.
However I tried this with a two form \underline{\alpha} = 1/2 \alpha_{\mu \nu} \underline{\omega}^\mu \wedge \underline{\omega}^\nu using the definition of the wedge product
\underline{\alpha}(\vec{e}_\alpha \wedge \vec{e}_\beta) = \frac{1}{2} \alpha_{\mu \nu} \underline{\omega}^\mu \wedge \underline{\omega}^\nu (\vec{e}_\alpha \wedge \vec{e}_\beta) \\<br /> = \frac{1}{2} \alpha_{\mu \nu} 4 \underline \omega^{[\mu} \underline \omega^{\mu ]}( \vec e_{[\alpha} \vec e_{\beta]}) \\<br /> = 2\alpha_{\mu \nu} \delta^{[\mu}_{[\alpha} \delta^{\nu ]}_{\beta]} \\<br /> = 2 \alpha_{\alpha \beta}
Where I have used that \underline \omega ^\mu \underline \omega^\nu = 2! \underline \omega^\mu \underline \omega^\nu. But should I not get \alpha_{\alpha \beta} here? Is the caculation wrong or is my assumption of what defines the components wrong?
\underline{d \omega}^\rho (\vec e_\mu \wedge e_\nu) = - c_{\mu \nu}^\rho
and then the author wrote that this implied that
\underline{d \omega}^\rho = - \frac{1}2 c_{\mu \nu}^\rho \underline{\omega}^\mu \wedge \underline{\omega}^\nu
so if the components of a p-form is defined as
\underline{\alpha} = \frac{1}{p!} \alpha_{\mu_1 \ldots \mu_p} \underline{\omega}^{\mu_1} \wedge \ldots \wedge \underline{\omega}^{\mu_p}
where \alpha_{\mu_1 \ldots \mu_p} are the components, it seems the argument above implies that one can find these by applying the p-form to the basis p-vectors.
However I tried this with a two form \underline{\alpha} = 1/2 \alpha_{\mu \nu} \underline{\omega}^\mu \wedge \underline{\omega}^\nu using the definition of the wedge product
\underline{\alpha}(\vec{e}_\alpha \wedge \vec{e}_\beta) = \frac{1}{2} \alpha_{\mu \nu} \underline{\omega}^\mu \wedge \underline{\omega}^\nu (\vec{e}_\alpha \wedge \vec{e}_\beta) \\<br /> = \frac{1}{2} \alpha_{\mu \nu} 4 \underline \omega^{[\mu} \underline \omega^{\mu ]}( \vec e_{[\alpha} \vec e_{\beta]}) \\<br /> = 2\alpha_{\mu \nu} \delta^{[\mu}_{[\alpha} \delta^{\nu ]}_{\beta]} \\<br /> = 2 \alpha_{\alpha \beta}
Where I have used that \underline \omega ^\mu \underline \omega^\nu = 2! \underline \omega^\mu \underline \omega^\nu. But should I not get \alpha_{\alpha \beta} here? Is the caculation wrong or is my assumption of what defines the components wrong?