I What do you need to establish that spin is conserved?

Old Person
Messages
31
Reaction score
10
TL;DR Summary
What do you need to establish that spin is a conserved quantity?
Hi.

Question as in the summary.
Spin has no obvious classical interpretation but it is often a conserved quantity and considered as some sort of angular momentum. What do you need to establish that spin is a conserved quantity? I'm finding references to situations where spin is not a conserved quantity in general but only in some processes. Hence, what is needed to assert conservation?

Any replies or references to existing discussions or proofs would save me time and be appreciated. Thank you for your time.
 
Physics news on Phys.org
Old Person said:
Spin has no obvious classical interpretation but it is often a conserved quantity and considered as some sort of angular momentum.
No, spin by itself is not "often" a conserved quantity. Total angular momentum is the conserved quantity. Only in situations where orbital angular momentum is either identically zero or is conserved on its own can spin be considered a conserved quantity by itself.

As for spin being "some sort of" angular momentum, that's much too vague. Spin is whatever part of total angular momentum is not orbital angular momentum. See, for example, Ballentine, Chapter 7.
 
  • Like
Likes topsquark, hutchphd, vanhees71 and 1 other person
Thank you. I'll look for that when I get to a library.
Found: "Quantum Mechanics: A Modern Development" by Leslie E. Ballentine.
No great need to reply - I'll assume it's that book unless you say otherwise.
 
Old Person said:
Found: "Quantum Mechanics: A Modern Development" by Leslie E. Ballentine.
Yes, that's it.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top