What Does Commutation Mean for Matrices A and B?

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary
SUMMARY

The discussion centers on the concept of commuting matrices, specifically addressing the condition where matrices A and B satisfy the equation A·B = B·A. It is established that most matrices do not commute, which affects their inverses, as demonstrated by the equation (A·B)⁻¹ = B⁻¹·A⁻¹, which is not equal to A⁻¹·B⁻¹ = (B·A)⁻¹. The conversation also explores the implications of matrix inversion and the identity matrix, emphasizing the uniqueness of inverses and identities in matrix operations.

PREREQUISITES
  • Understanding of matrix multiplication
  • Knowledge of matrix inverses
  • Familiarity with the identity matrix
  • Basic grasp of associative and distributive laws in algebra
NEXT STEPS
  • Study the properties of matrix inverses in detail
  • Learn about the identity matrix and its role in matrix operations
  • Explore examples of non-commuting matrices
  • Investigate the implications of the associative law in matrix algebra
USEFUL FOR

Students of linear algebra, mathematicians, and anyone interested in understanding matrix operations and their properties.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1682209044875.png

Dose someone pleas know where they get ##C = CI## from?

Also,
1682209425978.png

What dose it mean when A and B commute?

Many thanks!
 
Last edited by a moderator:
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this,
View attachment 325350
Dose someone pleas know where they get ##C = CI## from?

Also,
View attachment 325351
What dose it mean when A and B commute?

Many thanks!
Commuting matrices means that ##A\cdot B = B\cdot A.## Most matrices do not commute. That means
$$
(A\cdot B)^{-1} =B^{-1} \cdot A^{-1} \neq A^{-1}\cdot B^{-1} = (B\cdot A)^{-1}
$$

Inversion and transposition, too, change the order. You can see this by checking ##(A\cdot B)\cdot (A\cdot B)^{-1} =I.##
 
  • Like
Likes member 731016
fresh_42 said:
Commuting matrices means that ##A\cdot B = B\cdot A.## Most matrices do not commute. That means
$$
(A\cdot B)^{-1} =B^{-1} \cdot A^{-1} \neq A^{-1}\cdot B^{-1} = (B\cdot A)^{-1}
$$

Inversion and transposition, too, change the order. You can see this by checking ##(A\cdot B)\cdot (A\cdot B)^{-1} =I.##
Thank you for your reply @fresh_42 !

Is my checking correct ##A \cdot A^{-1} \cdot B \cdot B^{-1} = I_A \cdot I_B = I##?

Many thanks!
 
ChiralSuperfields said:
Thank you for your reply @fresh_42 !

Is my checking correct ##A \cdot A^{-1} \cdot B \cdot B^{-1} = I_A \cdot I_B = I##?

Many thanks!
Yes, but a bit short. The long version is:

\begin{align*}
(A\cdot B) \cdot (A\cdot B)^{-1}&=(A\cdot B) \cdot (B^{-1}\cdot A^{-1}) \\
&= A \cdot (B \cdot (B^{-1}\cdot A^{-1}))\\
&= A\cdot (( B\cdot B^{-1})\cdot A^{-1})\\
&= A\cdot (I\cdot A^{-1})\\
&= A \cdot A^{-1} \\
&= I
\end{align*}
This proves by using the associative law of multiplication that ##B^{-1}\cdot A^{-1}## is a inverse of ##(AB)^{-1}.##

I leave it to you to show that there cannot be more than one inverse, making ##B^{-1}\cdot A^{-1}## the inverse of ##(AB)^{-1}.## Same with the identity matrix. There can only be one so we do not need to distinguish between ##I_A## and ##I_B## or between left-identity ##I_L\cdot A=A## and right-identity ##A\cdot I_R=A.## Both are the same. This can also be proven.

These proofs are a bit like a puzzle playing around with the associative, possibly distributive law. A nice Sunday afternoon exercise. The trick is to proceed step by step and only use these laws plus the definitions, e.g. that ##I_L\cdot A=A## and ##A\cdot I_R=A.## Show that ##I_L=I_R\,!##
 
  • Informative
Likes member 731016

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K