What Does Commutation Mean for Matrices A and B?

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary

Homework Help Overview

The discussion revolves around the concept of commuting matrices, specifically the conditions under which two matrices A and B commute, meaning that A·B = B·A. Participants are exploring the implications of this property and its relation to matrix inversion and identity matrices.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants are questioning the origin of the equation C = CI and seeking clarification on the meaning of commuting matrices. There are attempts to verify mathematical statements regarding matrix inverses and identities.

Discussion Status

Some participants have provided definitions and properties related to commuting matrices, while others are engaging in verification of their understanding through specific examples and checks. The discussion appears to be productive, with various interpretations and mathematical reasoning being explored.

Contextual Notes

There is a focus on the properties of matrix multiplication and the uniqueness of inverses and identity matrices. Participants are encouraged to explore these concepts further without reaching definitive conclusions.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1682209044875.png

Dose someone pleas know where they get ##C = CI## from?

Also,
1682209425978.png

What dose it mean when A and B commute?

Many thanks!
 
Last edited by a moderator:
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this,
View attachment 325350
Dose someone pleas know where they get ##C = CI## from?

Also,
View attachment 325351
What dose it mean when A and B commute?

Many thanks!
Commuting matrices means that ##A\cdot B = B\cdot A.## Most matrices do not commute. That means
$$
(A\cdot B)^{-1} =B^{-1} \cdot A^{-1} \neq A^{-1}\cdot B^{-1} = (B\cdot A)^{-1}
$$

Inversion and transposition, too, change the order. You can see this by checking ##(A\cdot B)\cdot (A\cdot B)^{-1} =I.##
 
  • Like
Likes   Reactions: member 731016
fresh_42 said:
Commuting matrices means that ##A\cdot B = B\cdot A.## Most matrices do not commute. That means
$$
(A\cdot B)^{-1} =B^{-1} \cdot A^{-1} \neq A^{-1}\cdot B^{-1} = (B\cdot A)^{-1}
$$

Inversion and transposition, too, change the order. You can see this by checking ##(A\cdot B)\cdot (A\cdot B)^{-1} =I.##
Thank you for your reply @fresh_42 !

Is my checking correct ##A \cdot A^{-1} \cdot B \cdot B^{-1} = I_A \cdot I_B = I##?

Many thanks!
 
ChiralSuperfields said:
Thank you for your reply @fresh_42 !

Is my checking correct ##A \cdot A^{-1} \cdot B \cdot B^{-1} = I_A \cdot I_B = I##?

Many thanks!
Yes, but a bit short. The long version is:

\begin{align*}
(A\cdot B) \cdot (A\cdot B)^{-1}&=(A\cdot B) \cdot (B^{-1}\cdot A^{-1}) \\
&= A \cdot (B \cdot (B^{-1}\cdot A^{-1}))\\
&= A\cdot (( B\cdot B^{-1})\cdot A^{-1})\\
&= A\cdot (I\cdot A^{-1})\\
&= A \cdot A^{-1} \\
&= I
\end{align*}
This proves by using the associative law of multiplication that ##B^{-1}\cdot A^{-1}## is a inverse of ##(AB)^{-1}.##

I leave it to you to show that there cannot be more than one inverse, making ##B^{-1}\cdot A^{-1}## the inverse of ##(AB)^{-1}.## Same with the identity matrix. There can only be one so we do not need to distinguish between ##I_A## and ##I_B## or between left-identity ##I_L\cdot A=A## and right-identity ##A\cdot I_R=A.## Both are the same. This can also be proven.

These proofs are a bit like a puzzle playing around with the associative, possibly distributive law. A nice Sunday afternoon exercise. The trick is to proceed step by step and only use these laws plus the definitions, e.g. that ##I_L\cdot A=A## and ##A\cdot I_R=A.## Show that ##I_L=I_R\,!##
 
  • Informative
Likes   Reactions: member 731016

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
2K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K