Vanadium 50 said:
the relationship between the units is fixed. V = L/T. That is true whether we define L and T (as we used to) or V and T (as we do today)
This is really not true in general. Let's start with Gaussian units vs SI units and go to your example here by analogy.
In Gaussian units Coulomb's law is $$f=\frac{q_1 q_2}{r^2}$$ where ##f## is force, ##q## is charge, and ##r## is distance. In Gaussian units ##[f]=M^{1}\ L^{1}\ T^{-2}## and ##[r]=L^1## so ##[q]=L^{3/2}\ M^{1/2}\ T^{-1}##. Importantly, charge does not have an independent base dimension. Electric charge is a derived unit.
In SI units Coulomb's law is $$f=k\frac{q_1 q_2}{r^2}$$ where ##k## is a universal constant that is present only to make the units match. As before we have ##[f]=M^{1}\ L^{1}\ T^{-2}## and ##[r]=L^1##, but now ##[q]=I^{1}\ T^{1}## so ##[k]=M^{1}\ L^{3}\ T^{-4}\ I^{-2}##
Note that both systems use ##M##, ##L##, and ##T## dimensions, but SI introduces an extra dimension, ##I##, and because of the additional dimension Coulomb's law in SI contains an extra constant that is not found in Coulomb's law in Gaussian units. This constant is a "universal" dimensionful constant that seems like it is telling you something about the universe or physics, but is actually only telling you that you are using SI units instead of Gaussian units. The constant serves only to bring in the SI base dimension ##I## for electrical current, which is absent in Gaussian units.
So, you say that in all units ##V=L/T##, but that is not necessarily true. We could use Dale2 units where we measure ##v## in knots with ##[v]=V^{1}##, ##l## in feet with ##[l]=L^{1}##, and ##t## in seconds with ##[t]=T^{1}##. Then in these units we would have $$v=k \frac{l}{t}$$ where ##k## is a dimensionful constant, with dimensions ##[k]=V^{1}\ L^{-1}\ T^{1}##, that converts between the Dale2 base units for time, distance, and speed.
These three base units would be independent in in precisely the same way that ##I##, ##T##, ##M##, and ##L## are in SI units. The fact that SI units do not have an independent dimension for speed does not make the Dale2 units invalid for the same reason that Gaussian units which do not have an independent dimension for current do not make SI units invalid.
If you just feel like the Dale2 unit convention must be wrong for having ##V## as an independent base dimension then craft your argument. Whatever argument you craft can also be used to show that the SI unit convention must be wrong for having ##I## as an independent base dimension.
PeterDonis said:
If the dimensions of the units of these three quantities do not have the relationship described earlier in this post, then the mathematical equation describing the above relationship between physical measurements would have to have an extra constant in it with dimension L V−1 T−1.
Yes, exactly.