MHB What does the notation $||A-B||_{2,a}$ represent in terms of matrix norms?

  • Thread starter Thread starter OhMyMarkov
  • Start date Start date
  • Tags Tags
    Norm Notation
OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

I came across, in a reading, an unfamiliar norm notation: $||A-B||_{2,a}$ where $a$ is the standard deviation of a Gaussian kernel. Now I know that the index 2 represents the $\ell _2$ norm, but what about the $a$?

Moreover, is the matrix norm defnied in a similar way to the vector norm?Any help is apptreciated!
 
Physics news on Phys.org
OhMyMarkov said:
Hello everyone!

I came across, in a reading, an unfamiliar norm notation: $||A-B||_{2,a}$ where $a$ is the standard deviation of a Gaussian kernel. Now I know that the index 2 represents the $\ell _2$ norm, but what about the $a$?

Moreover, is the matrix norm defnied in a similar way to the vector norm?Any help is apptreciated!

Hi OhMyMarkov, :)

The definition of the matrix norm and the notation you are taking about are explained here.

Kind Regards,
Sudharaka.
 
Thank you, Sudharaka,

I may need to point this out in case someone else comes across it in the future: this notation means the Element-wise (or Frobenius I guess) norm of the 2D-convolution of A with a Gaussian kernel of standard deviation a.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top