MHB What does the notation $||A-B||_{2,a}$ represent in terms of matrix norms?

  • Thread starter Thread starter OhMyMarkov
  • Start date Start date
  • Tags Tags
    Norm Notation
OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

I came across, in a reading, an unfamiliar norm notation: $||A-B||_{2,a}$ where $a$ is the standard deviation of a Gaussian kernel. Now I know that the index 2 represents the $\ell _2$ norm, but what about the $a$?

Moreover, is the matrix norm defnied in a similar way to the vector norm?Any help is apptreciated!
 
Physics news on Phys.org
OhMyMarkov said:
Hello everyone!

I came across, in a reading, an unfamiliar norm notation: $||A-B||_{2,a}$ where $a$ is the standard deviation of a Gaussian kernel. Now I know that the index 2 represents the $\ell _2$ norm, but what about the $a$?

Moreover, is the matrix norm defnied in a similar way to the vector norm?Any help is apptreciated!

Hi OhMyMarkov, :)

The definition of the matrix norm and the notation you are taking about are explained here.

Kind Regards,
Sudharaka.
 
Thank you, Sudharaka,

I may need to point this out in case someone else comes across it in the future: this notation means the Element-wise (or Frobenius I guess) norm of the 2D-convolution of A with a Gaussian kernel of standard deviation a.
 
Back
Top