What Does the Third Axis Represent in Riemann Zeta Function Zeros Graphs?

Click For Summary
The third axis in the Riemann Zeta Function Zeros graphs represents the absolute value of the Zeta function, alongside the real and imaginary parts. The "hole" observed in the graphs is not indicative of a nontrivial zero but rather a pole, as the values are too large to be displayed. This phenomenon occurs due to the nature of the function itself. The discussion clarifies the representation of the Zeta function in the Argand Diagram format. Understanding these aspects is crucial for interpreting the behavior of the Riemann Zeta function.
SpaceDreamer
Messages
45
Reaction score
0
I was looking at the Wolfram Alpha page on the Riemann Zeta Function Zeros which can be found here, http://mathworld.wolfram.com/RiemannZetaFunctionZeros.html

At the top of the pag there are three graphs each with what looks to be a hole through the graph. Now I know the graph is an Argand Diagram showing the function in bot the real and imaginary axis but what is the third axis? Another question is for the graph on the right the
l ζ(z) l which is the absolute value of the Zeta function correct? If it is not the Zeta function then what is the equation?

Is the hole in the graph a nontrivial zero or just a result of the function?

Thank You.
 
Mathematics news on Phys.org
The third axis is the plotted value - the real part, the imaginary part, and the absolute value of the Zeta function.

Is the hole in the graph a nontrivial zero or just a result of the function?
The values are too large to get displayed, that looks like a pole.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
11K