What does this expression involving Partial Derivatives mean?

AI Thread Summary
The discussion centers on understanding the expression involving partial derivatives, specifically in the context of a symmetric function with three parameters. Participants clarify that the indices used (i, j, k) are interchangeable with (1, 2, 3) but do not specify which corresponds to which. It is emphasized that the function's symmetry allows for this substitution, and the partial derivatives can be computed accordingly. A suggestion is made to use a brute force method to derive the expression, while also noting the importance of maintaining cyclic order among the indices. The conversation highlights the complexity of the problem and the need for careful consideration of the indices involved.
physicss
Messages
25
Reaction score
4
Homework Statement
Hello, what does this expression mean?
Relevant Equations
(Picture)
I already solved w x x/|x|
For (w1,w2,w3) and (x1,x2,x3)
2E486A9A-524A-4515-AC6C-71F2B9313E92.jpeg
 
Physics news on Phys.org
physicss said:
Homework Statement: Hello, what does this expression mean?
Relevant Equations: (Picture)

I already solved w x x/|x|
For (w1,w2,w3) and (x1,x2,x3) View attachment 327170
Then you just have to take the partial derivative wrt ##x_i## and again wrt ##x_j##.
 
haruspex said:
Then you just have to take the partial derivative wrt ##x_i## and again wrt ##x_j##.
Thanks for the answer. Would xi and xj be x1 and x2 in this case?
 
physicss said:
Thanks for the answer. Would xi and xj be x1 and x2 in this case?
No. Because the function is symmetric in the three parameters, you can replace them with ##x_i##, ##x_j##, ##x_k##, where it is understood that {i,j,k}={1,2,3}, but which is which is unspecified.
For example, suppose you had the function ##x_1x_2x_3## then its partial derivative wrt ##x_i## and ##x_j## would be ##x_k##.

Edit, you might also need to assume that i, j, k are in the same cyclic order as 1, 2, 3.

Edit 2: Just realised my posts may be off the mark. I need to solve it myself first.

Edit 3:
Rereading the question, I see it does not refer to indices 1, 2, 3. That is something you assumed. So my correct answer to your post #3 is:

Yes, they are using i, j, k as the indices, not 1, 2, 3.
 
haruspex said:
No. Because the function is symmetric in the three parameters, you can replace them with ##x_i##, ##x_j##, ##x_k##, where it is understood that {i,j,k}={1,2,3}, but which is which is unspecified.
For example, suppose you had the function ##x_1x_2x_3## then its partial derivative wrt ##x_i## and ##x_j## would be ##x_k##.

Edit, you might also need to assume that i, j, k are in the same cyclic order as 1, 2, 3.

Edit 2: Just realised my posts may be off the mark. I need to solve it myself first.

Edit 3:
Rereading the question, I see it does not refer to indices 1, 2, 3. That is something you assumed. So my correct answer to your post #3 is:

Yes, they are using i, j, k as the indices, not 1, 2, 3.
Thank you
 
Presumably ##\vec {\omega}## is constant and does not depend on the ##x_i##. I would try the brute force method which is always safe.
  1. Write ##\dfrac{\vec x}{|\vec x|}=\dfrac{x_1~\hat{x}_1+x_2~\hat{x}_2+x_3~\hat{x}_3}{\left[x_1^2+x_2^2+x_3^2 \right]^{1/2}}.##
  2. Find ##\dfrac{\partial^2}{\partial x_1\partial x_2}\left( \dfrac{x_1~\hat{x}_1+x_2~\hat{x}_2+x_3~\hat{x}_3}{\left[x_1^2+x_2^2+x_3^2 \right]^{1/2}} \right)##.
  3. Do a cyclic permutation of indices to find the other two terms.
  4. Take the cross product.
There might a simpler way to do this but I can't see what it is. I assume that in your original expression you have "off-diagonal" elements only, i.e. it is stipulated somewhere that ##i\neq j##.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top