What does this expression involving Partial Derivatives mean?

Click For Summary

Homework Help Overview

The discussion revolves around the interpretation of an expression involving partial derivatives, specifically in the context of a function that appears to be symmetric in three parameters. Participants are exploring the implications of taking partial derivatives with respect to these parameters.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the meaning of the expression and the process of taking partial derivatives. There is a focus on the symmetry of the function and how it relates to the indices used in the derivatives. Questions arise regarding the specific indices and their relationships.

Discussion Status

The conversation is ongoing, with participants providing insights and clarifications about the indices and the nature of the function. Some guidance has been offered regarding the use of cyclic permutations and the assumption of symmetry, but no consensus has been reached on a definitive approach.

Contextual Notes

There is a mention of the need to assume that the indices are in a cyclic order, and some participants express uncertainty about their previous assumptions regarding the indices used in the expression.

physicss
Messages
25
Reaction score
4
Homework Statement
Hello, what does this expression mean?
Relevant Equations
(Picture)
I already solved w x x/|x|
For (w1,w2,w3) and (x1,x2,x3)
2E486A9A-524A-4515-AC6C-71F2B9313E92.jpeg
 
Physics news on Phys.org
physicss said:
Homework Statement: Hello, what does this expression mean?
Relevant Equations: (Picture)

I already solved w x x/|x|
For (w1,w2,w3) and (x1,x2,x3) View attachment 327170
Then you just have to take the partial derivative wrt ##x_i## and again wrt ##x_j##.
 
haruspex said:
Then you just have to take the partial derivative wrt ##x_i## and again wrt ##x_j##.
Thanks for the answer. Would xi and xj be x1 and x2 in this case?
 
physicss said:
Thanks for the answer. Would xi and xj be x1 and x2 in this case?
No. Because the function is symmetric in the three parameters, you can replace them with ##x_i##, ##x_j##, ##x_k##, where it is understood that {i,j,k}={1,2,3}, but which is which is unspecified.
For example, suppose you had the function ##x_1x_2x_3## then its partial derivative wrt ##x_i## and ##x_j## would be ##x_k##.

Edit, you might also need to assume that i, j, k are in the same cyclic order as 1, 2, 3.

Edit 2: Just realised my posts may be off the mark. I need to solve it myself first.

Edit 3:
Rereading the question, I see it does not refer to indices 1, 2, 3. That is something you assumed. So my correct answer to your post #3 is:

Yes, they are using i, j, k as the indices, not 1, 2, 3.
 
haruspex said:
No. Because the function is symmetric in the three parameters, you can replace them with ##x_i##, ##x_j##, ##x_k##, where it is understood that {i,j,k}={1,2,3}, but which is which is unspecified.
For example, suppose you had the function ##x_1x_2x_3## then its partial derivative wrt ##x_i## and ##x_j## would be ##x_k##.

Edit, you might also need to assume that i, j, k are in the same cyclic order as 1, 2, 3.

Edit 2: Just realised my posts may be off the mark. I need to solve it myself first.

Edit 3:
Rereading the question, I see it does not refer to indices 1, 2, 3. That is something you assumed. So my correct answer to your post #3 is:

Yes, they are using i, j, k as the indices, not 1, 2, 3.
Thank you
 
Presumably ##\vec {\omega}## is constant and does not depend on the ##x_i##. I would try the brute force method which is always safe.
  1. Write ##\dfrac{\vec x}{|\vec x|}=\dfrac{x_1~\hat{x}_1+x_2~\hat{x}_2+x_3~\hat{x}_3}{\left[x_1^2+x_2^2+x_3^2 \right]^{1/2}}.##
  2. Find ##\dfrac{\partial^2}{\partial x_1\partial x_2}\left( \dfrac{x_1~\hat{x}_1+x_2~\hat{x}_2+x_3~\hat{x}_3}{\left[x_1^2+x_2^2+x_3^2 \right]^{1/2}} \right)##.
  3. Do a cyclic permutation of indices to find the other two terms.
  4. Take the cross product.
There might a simpler way to do this but I can't see what it is. I assume that in your original expression you have "off-diagonal" elements only, i.e. it is stipulated somewhere that ##i\neq j##.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K