Undergrad What does this vector notation mean?

Click For Summary
The notation φ(a,b) represents the angle φ between two vectors a and b, emphasizing the dependence of the angle on the specific vectors involved. It serves as a precise way to denote the relationship without needing to describe it in words. Understanding this notation is important for clarity in vector mathematics. Additionally, the discussion touches on the length of a vector, which can be calculated using the Pythagorean theorem. Overall, grasping these notations enhances comprehension of vector concepts in class.
Yealtas
Hello,

I'm currently doing vectors in class, but I don't know what these parts mean.

Especially φ(a,b). I understand cos(φ), but I don't understand cos(φ(a,b)). φ is the angle between two vectors a and b, but what does the (a,b) part add?

I tried to google, but I couldn't really find anything helpful. Again, I'm not interested in proof or anything of the likes right now. For now I am just trying to decipher the symbols so I understand what I am doing.

Thanks in advance for the help.
 
Mathematics news on Phys.org
The (##\vec a, \vec b##) part just informs someone that the angle φ is the angle between the vectors a and b (without the obligation to write it in words) as you correctly said.
 
Yealtas said:
Hello,

I'm currently doing vectors in class, but I don't know what these parts mean.

Especially φ(a,b). I understand cos(φ), but I don't understand cos(φ(a,b)). φ is the angle between two vectors a and b, but what does the (a,b) part add?
It is simply rigor. ##\varphi (\vec{a},\vec{b})## is what you wrote: angle ##\varphi ## between ##\vec{a}## and ##\vec{b}##. As the angle depends on the vectors, and the order, it is simply the precise way to write it, so ##\varphi = \varphi (\vec{a},\vec{b})##.
I tried to google, but I couldn't really find anything helpful. Again, I'm not interested in proof or anything of the likes right now. For now I am just trying to decipher the symbols so I understand what I am doing.

Thanks in advance for the help.
The other marked notation means: If ##\vec{a}=(a_1,\ldots ,a_n)## in coordinates, then for the length of the vector ##|\vec{a}|^2 = a_1^2+\ldots + a_n^2##. It's the theorem of Pythagoras.
 
DoItForYourself said:
The (##\vec a, \vec b##) part just informs someone that the angle φ is the angle between the vectors a and b (without the obligation to write it in words) as you correctly said.
fresh_42 said:
It is simply rigor. ##\varphi (\vec{a},\vec{b})## is what you wrote: angle ##\varphi ## between ##\vec{a}## and ##\vec{b}##. As the angle depends on the vectors, and the order, it is simply the precise way to write it, so ##\varphi = \varphi (\vec{a},\vec{b})##.

The other marked notation means: If ##\vec{a}=(a_1,\ldots ,a_n)## in coordinates, then for the length of the vector ##|\vec{a}|^2 = a_1^2+\ldots + a_n^2##. It's the theorem of Pythagoras.

Thanks, both of you. :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K