I was thinking about the connection between fields and particles. For instance the scalar field Φ(x) and the field Φ(x)+a both represent the same scalar particle. Because the action ∫∂Φ∂Φdx^4 is unaltered and the propagator <0|[Φ(x)+a,Φ(y)+a]|0> is presumably the same. What about if we replace Φ(x) with bΦ(x)+a?(adsbygoogle = window.adsbygoogle || []).push({});

But what if we rewrote the action in terms of a field χ(x) = f( Φ(x) ) where χ is some function, f, of Φ. Then we had an action in terms of χ. How do we know how to get the field representing the particle? Does it matter?

For example if χ = Φ^2 then S = ∫χ^(-1)∂χ∂χ dx^4. Why do we not say that χ is a field of a scalar particle? Are there any rules to this?

What got me thinking about this is that the metric is split into a constant background part and a graviton part: g(x)=η+h(x) but why not split the inverse-metric that way instead? e.g. g(x)^(-1) =η+h(x). Or why can't we have g(x) = ηexp( h(x) )=η+h(x)+h(x)^2+... for example? Does it always have to be linear? But then if the metric is split linearly into a graviton part the inverse graviton part is non-linear.

Related is that in quantum gravity we would take the path integral over the metric g, but why not over its inverse g^(-1)?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# What functions of fields describe particles?

Loading...

Similar Threads - functions fields describe | Date |
---|---|

A Conformal window | Jan 22, 2018 |

A Taylor series expansion of functional | Jan 4, 2017 |

Photon one point function | Oct 1, 2015 |

Typical Momentum Invariants of a 3-Point Function | Jul 12, 2015 |

Spectral weight function and the mass shift of a scalar field | Aug 13, 2011 |

**Physics Forums - The Fusion of Science and Community**