I What group might represent the symmetries of these carbon rings?

askmathquestions
Messages
65
Reaction score
6
The carbon rings in the upper-middle of this page https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/react3.htm such as corannulene or coronene possess symmetries. But, they are not the typical dihedral arrangements of points, like a single hexagon or single pentagon or single equilateral triangle.

So, what group represents the symmetries of tiles of hexagons, or tiles of triangles and so on?
 
Physics news on Phys.org
askmathquestions said:
The carbon rings in the upper-middle of this page https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/react3.htm such as corannulene or coronene possess symmetries. But, they are not the typical dihedral arrangements of points, like a single hexagon or single pentagon or single equilateral triangle.

So, what group represents the symmetries of tiles of hexagons, or tiles of triangles and so on?
This cannot be answered in such a generality. Every molecule has its own (not necessarily different) symmetry group. All that can be said is, that if ##n## is the number of vertices, then it is a subgroup of ##\operatorname{Sym}(n),## i.e. a finite group, which is more of a trivial fact than an answer.

This is subject to crystallography.
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
Replies
6
Views
5K