Torog, I appreciate your thinking, and then questions following on how we might define a clock. This is a good thread to help at least some of us attempt to properly anchor the roots of time itself.
First, I should correct my previous assertion (below) that all clocks rely on angular momentum... not certifiably true. It arose from a different, also unmentionable personal idea.
Wes Tausend said:
All our clocks have this common denominator. They all rely on angular momentum, or a portion thereof , one way or another, to stay synchronized and count off rotations or portions thereof (pendulum).
DrGreg properly
rejected my reasoning on a surviving earlier post and I hereby acknowledge he is correct; strictly angular momentum cannot be the charred key we seek here. My bad.
I find of particular interest what
Sorcerer and
Dale have discussed above in posts #68 & #69. While I struggle to understand the abstract math symbols of
Noether's Theorem, I think I do recognized the conceptual value of, "the principle of least action", as
partially worded in this first paragraph. This paragraph seems very much along the lines of Occam's Razor, or as Maupertuis supposedly felt, that "
Nature is thrifty in all its actions".
It seems that the ultimate object of science is to simplify whatever processes and observances of Nature that we can. For instance, we might strongly suspect Mother Nature is lazy, that she accomplishes her vocation in the simplest manner possible... and when sufficiently 'cooked', these actions should boil down to fundamental principles... in other words the very charred essence of what we seek. I really like the simplicity of conservation of energy idea for this and other reasons.
Prior to the conservation of energy posts, I was tempted to come back and suggest that, since all
classical clocks
seem to at least rely on non-erratic motion events, that perhaps conserved general momentums (not just angular) were still the key. Even a candle flame, water or sand must move non-erratically to usefully differentiate the increments as a clock. But 'conservation of energy' seems a much better key now that it has emerged from the soot... because 'conservation of energy' allows not just conserving momentum, but storing that momentum for reuse as counter-momentum if we wish. Clocks commonly work by stored energy and each burst is measurably the same as last. As food for thought, it seems perhaps an escapement loop principle somehow regulates them all.
In a non-classical view, regarding quantum behavior of atoms when
remarks on motion were given by Mister T, I am still not so sure I can draw an obvious conclusion that there is an obvious discernible atomic counterpart to classic laws of motion, but that is just me. In my quantum fog, it seems we should only know either the position of the 'tiny' hands or the rate, but not both at the same time. Yet atoms furnish us a great timepiece, apparently by rate alone. It is like a blind man that can hear, and use, the precise tick-tock but need not see the position of the hands to tell time.
But then conservation of energy was brought up. Ok, I know energy transcends both mechanical and quantum. This is better. Just "hearing" the tick-tock of an atom is the process of periodic electromagnetic energy escaping, enough as to form a useful timepiece, particle position notwithstanding. The electromagnetic energy will escape and tell us time until it runs out, or ceases to be applied, like any other clock. Perhaps someone could explain if both atomic and mechanical share a comparable hidden escapement mechanism to not release their energy nearly all at once. Seems maybe worth a Nobel Prize... unless it's been done.
Torog said:
You qualify the above with (pendulum). Isn't it possible that if you drill down into the mechanism of all clocks you will find Inertial mass somewhere in the regulating mechanism.
Thanks, this is what interests me, the how or physics of the regulating mechanisms of clocks.
It is still not so clear to me why 'drilling down' would not succeed, why Nature would suddenly abandon her simplicity right at the bottom of the hole. It's difficult to leave Einstein's side and not share his desperate want to discover why random motion seemingly rules so non-erratically at the core. How can something so random as the ghostly gears of an atom be our best clock? Perhaps we will only really know the atomic mechanism in a heuristic mechanical sense, if or when Einstein's dice ever reveal their secret. Quantum gravity heck; what is quantum time? Non sequor...
---------------------------------------------------------------------------------
It seems a thread like this, where there is not a specific single answer to cite, elicits more opinions that border on speculation. The safer route seems to be saying not much, which I've tried to avoid. I hope I am ok today.
To be upfront, I was the (or a) guilty party in earlier setting foot outside the rules box and got a time-out. I apologize, my zeal to somehow add insight occasionally precedes my head. My uncited previous post, especially about cosmology, was removed and I deserved it. I do very much continue to appreciate the tedious behind-the-scenes work done here by Mentors even when it turns out I'm the rascal gone
Beagle Boy. So thanks, Mentors.
And thankfully Torog's worthy clock thread was not locked on my account.
Wes