arivero
Gold Member
- 3,481
- 187
It is possible to use only the mass of the top, or the electoweak vacuum, and ask for a Koide waterfall chaining solutions until we arrive to a mass of the top equal to zero. There are five such chains, only three of them are actually "falls", and of those only one uses always the same solution of the Koide equation (see my paper, or this thread above). The waterfall is:
Note that the last triplet is even older than Koide, from Harari et al.
This descent uses only one input, Fermi scale, and the mases of c and s are even near of tau and muon that in the descent with two inputs. It supports then the idea of an unperturbed spectrum, where charged leptons are degenerated with some quarks, and then a perturbations that somehow commutes with the cause of Koide.
t:174.10 GeV--> b:3.64 GeV---> c:1.698 GeV --> s:121.95 MeV ---> u:0 ---> d:8.75 KeV
Note that the last triplet is even older than Koide, from Harari et al.
This descent uses only one input, Fermi scale, and the mases of c and s are even near of tau and muon that in the descent with two inputs. It supports then the idea of an unperturbed spectrum, where charged leptons are degenerated with some quarks, and then a perturbations that somehow commutes with the cause of Koide.