MHB What is the answer after convergence in TI-Nspire CX CAS?

Click For Summary
The discussion centers on evaluating the infinite series S_k using the TI-Nspire CX CAS. Participants calculate the series S_k = ∑_{k=1}^{∞} [(-2)/(9^{k+1})] and derive different results, including -2/99 and -1/36. The geometric series formula is applied, with the common ratio being 1/9, leading to various interpretations of the sum. The calculations emphasize the importance of correctly applying the geometric series formula to achieve accurate results. The conversation highlights the complexities involved in convergence and series evaluation using the calculator.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{Evaluate answer from }\textit{ TI-Nspire CX CAS}$
\begin{align*}
\displaystyle
S_k&=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} \\
\end{align*}
ok wasn't sure what weapon of choice to use
$\tiny{206.10.3.75}$
☕
 
Physics news on Phys.org
$$S=\sum_{k=1}^{\infty}\left(\frac{-2}{9^{k+1}}\right)=-\frac{2}{81}\sum_{k=1}^{\infty}\left(\left(\frac{1}{9}\right)^{k-1}\right)=-\frac{2}{81}\cdot\frac{1}{1-\dfrac{1}{9}}=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
 
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.71}$
☕
 
Last edited:
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-1}{3} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.75}$
☕