What is the answer after convergence in TI-Nspire CX CAS?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Convergence Method
Click For Summary

Discussion Overview

The discussion revolves around evaluating the sum of an infinite series using the TI-Nspire CX CAS. Participants are exploring the convergence of the series defined by the expression \( S_k = \sum_{k=1}^{\infty} \left[\frac{(-2)}{9^{k+1}}\right] \) and presenting different results based on their calculations.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant calculates \( S_k \) and arrives at \( \frac{-2}{99} \).
  • Another participant presents a different evaluation of the series, leading to \( -\frac{1}{36} \) through a geometric series approach.
  • A third participant also calculates \( S_k \) and arrives at \( -\frac{1}{36} \), reinforcing the geometric series method.
  • A fourth participant proposes yet another evaluation of \( S_k \), yielding \( \frac{-1}{3} \), but does not clarify the steps leading to this result.

Areas of Agreement / Disagreement

Participants do not reach a consensus, as multiple competing results for \( S_k \) are presented, including \( \frac{-2}{99} \), \( -\frac{1}{36} \), and \( \frac{-1}{3} \). The discussion remains unresolved regarding the correct evaluation of the series.

Contextual Notes

Participants utilize the formula for the sum of a geometric series, but there are discrepancies in the application of this formula and the interpretation of the series terms. The assumptions underlying each calculation are not fully articulated, leading to different results.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{Evaluate answer from }\textit{ TI-Nspire CX CAS}$
\begin{align*}
\displaystyle
S_k&=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} \\
\end{align*}
ok wasn't sure what weapon of choice to use
$\tiny{206.10.3.75}$
☕
 
Physics news on Phys.org
$$S=\sum_{k=1}^{\infty}\left(\frac{-2}{9^{k+1}}\right)=-\frac{2}{81}\sum_{k=1}^{\infty}\left(\left(\frac{1}{9}\right)^{k-1}\right)=-\frac{2}{81}\cdot\frac{1}{1-\dfrac{1}{9}}=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
 
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.71}$
☕
 
Last edited:
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-1}{3} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.75}$
☕
 

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K