What is the answer after convergence in TI-Nspire CX CAS?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Convergence Method
Click For Summary
SUMMARY

The forum discussion focuses on evaluating the convergence of a geometric series using the TI-Nspire CX CAS calculator. The series in question is represented as \( S_k = \sum_{k=1}^{\infty} \left[\frac{-2}{9^{k+1}}\right] \), which converges to \( \frac{-2}{99} \). Various users confirm the calculation, demonstrating the application of the geometric series formula \( \sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{(1-r)} \) to derive the final result of \( S_k = -\frac{1}{36} \) when evaluated correctly.

PREREQUISITES
  • Understanding of geometric series and their convergence criteria.
  • Familiarity with the TI-Nspire CX CAS calculator functionalities.
  • Basic knowledge of summation notation and series evaluation.
  • Ability to manipulate algebraic expressions and fractions.
NEXT STEPS
  • Learn how to use the TI-Nspire CX CAS for advanced series evaluations.
  • Study the properties of geometric series in greater detail.
  • Explore convergence tests for infinite series beyond geometric series.
  • Investigate the implications of series convergence in real-world applications.
USEFUL FOR

Mathematicians, educators, students in calculus, and anyone interested in mastering series convergence using the TI-Nspire CX CAS calculator.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{Evaluate answer from }\textit{ TI-Nspire CX CAS}$
\begin{align*}
\displaystyle
S_k&=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} \\
\end{align*}
ok wasn't sure what weapon of choice to use
$\tiny{206.10.3.75}$
☕
 
Physics news on Phys.org
$$S=\sum_{k=1}^{\infty}\left(\frac{-2}{9^{k+1}}\right)=-\frac{2}{81}\sum_{k=1}^{\infty}\left(\left(\frac{1}{9}\right)^{k-1}\right)=-\frac{2}{81}\cdot\frac{1}{1-\dfrac{1}{9}}=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
 
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.71}$
☕
 
Last edited:
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-1}{3} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.75}$
☕
 

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K