MHB What is the answer after convergence in TI-Nspire CX CAS?

Click For Summary
The discussion centers on evaluating the infinite series S_k using the TI-Nspire CX CAS. Participants calculate the series S_k = ∑_{k=1}^{∞} [(-2)/(9^{k+1})] and derive different results, including -2/99 and -1/36. The geometric series formula is applied, with the common ratio being 1/9, leading to various interpretations of the sum. The calculations emphasize the importance of correctly applying the geometric series formula to achieve accurate results. The conversation highlights the complexities involved in convergence and series evaluation using the calculator.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{Evaluate answer from }\textit{ TI-Nspire CX CAS}$
\begin{align*}
\displaystyle
S_k&=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} \\
\end{align*}
ok wasn't sure what weapon of choice to use
$\tiny{206.10.3.75}$
☕
 
Physics news on Phys.org
$$S=\sum_{k=1}^{\infty}\left(\frac{-2}{9^{k+1}}\right)=-\frac{2}{81}\sum_{k=1}^{\infty}\left(\left(\frac{1}{9}\right)^{k-1}\right)=-\frac{2}{81}\cdot\frac{1}{1-\dfrac{1}{9}}=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
 
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-2}{99} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.71}$
☕
 
Last edited:
$\text{Evaluate }$
$$\displaystyle
S_k=\sum_{k=1}^{\infty}
\left[\frac{(-2)}{9^{k+1}}\right]
=\frac{-1}{3} $$
$\text{geometric series}$
$$\sum_{k=1}^{\infty}ar^{k-1}=\frac{a}{(1-r)},
\ \ \left| r \right|< 1$$
$$\displaystyle S_k=-\frac{2}{81}\sum_{k=1}^{\infty}
\left(\frac{1}{9}\right)^{k-1}
=\frac{1}{1-\dfrac{1}{9}}
=-\frac{2}{81}\cdot\frac{9}{8}=-\frac{1}{36}$$
$\tiny{206.10.3.75}$
☕
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K