What is the area of rectangle ABCD?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Area Rectangle
Click For Summary

Discussion Overview

The discussion centers around finding the area of rectangle ABCD given specific points and segments defined within the rectangle. The problem involves geometric relationships and angles formed by intersections of lines drawn from points on the rectangle's sides.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents a geometric configuration involving points E and F on sides BC and AB, respectively, with specific segment lengths defined.
  • Another participant shares their attempt at solving the problem, though the details of their approach are not provided.
  • A further participant mentions an alternative presentation of the problem, suggesting that a certain device may or may not have been used in the initial setup.

Areas of Agreement / Disagreement

The discussion does not indicate any consensus or resolution regarding the area of rectangle ABCD, as multiple attempts and perspectives are presented without a definitive conclusion.

Contextual Notes

There are limitations in the clarity of the problem setup, particularly regarding the implications of the angles and the relationships between the segments, which remain unresolved.

Albert1
Messages
1,221
Reaction score
0
$Rectangle\,\,ABCD\,\,given\,\, point \,\,E,F \,\,on \,\,\overline {BC},\overline {AB}\,\,\, respectively$
$if \,\,\overline{BF}=\overline{CE}=4,\overline{BE}=2,point \,\, P \,\,is\,\, the \,\, intersection\,\ of\,\,\overline{AE}\,\,and\,\,\overline{CF},\,\, and \,\, \angle APC=\angle AEB+\angle CFB$
$please\,\,find \,\, the \,\, area \,\, of \,\, rectangle \,\,ABCD$
 
Mathematics news on Phys.org
My attempt:

View attachment 6288
Let
\[\alpha =\angle AEB\: \: \: and \: \: \: \beta =\angle CFB\]

Note, that

\[\angle APC = \angle FPE = \alpha +\beta\]

The quadrilateral, $BFPE$, has the angle sum:

\[90^{\circ}+2( \alpha +\beta )=360^{\circ}\]

Thus, $\alpha + \beta = 135^{\circ}$

$\alpha$ and $\beta$ are easily calculated:

\[\tan\beta =\frac{\overline{BC}}{\overline{BF}}=\frac{3}{2}\Rightarrow \: \: \beta =56,31^{\circ}\]

\[\alpha = 135^{\circ}-56,31^{\circ}=78,69^{\circ}\]

Finally, $FA$ is found:

\[\tan \alpha =\frac{4+\overline{FA}}{2}\Rightarrow \overline{FA}=6.\]

Thus, the rectangle, $ABCD$, has the area: $6 \cdot 10 = 60$.
 

Attachments

  • Area of rectangle ABCD.PNG
    Area of rectangle ABCD.PNG
    3.2 KB · Views: 134
lfdahl said:
My attempt:

Let
\[\alpha =\angle AEB\: \: \: and \: \: \: \beta =\angle CFB\]

Note, that

\[\angle APC = \angle FPE = \alpha +\beta\]

The quadrilateral, $BFPE$, has the angle sum:

\[90^{\circ}+2( \alpha +\beta )=360^{\circ}\]

Thus, $\alpha + \beta = 135^{\circ}$

$\alpha$ and $\beta$ are easily calculated:

\[\tan\beta =\frac{\overline{BC}}{\overline{BF}}=\frac{3}{2}\Rightarrow \: \: \beta =56,31^{\circ}\]

\[\alpha = 135^{\circ}-56,31^{\circ}=78,69^{\circ}\]

Finally, $FA$ is found:

\[\tan \alpha =\frac{4+\overline{FA}}{2}\Rightarrow \overline{FA}=6.\]

Thus, the rectangle, $ABCD$, has the area: $6 \cdot 10 = 60$.
Your answer is correct,thanks a lot .
But how do you get the value of $tan\,\alpha$ using a calculator ? if so try not
 
Here it is without aforementioned device (if such a device was actually used).

Using lfdahl's diagram and the result $\alpha+\beta=135^\circ$,

$$\tan(\alpha+\beta)=-1=\frac{\tan(\alpha)+\tan(\beta)}{1-\tan(\alpha)\tan(\beta)}=\frac{\tan(\alpha) + 3/2}{1-3\tan(\alpha)/2}\implies\tan(\alpha)=5$$

and the result follows.
 
Albert said:
Your answer is correct,thanks a lot .
But how do you get the value of $tan\,\alpha$ using a calculator ? if so try not
Without the use of a calculator:
\[\tan(\beta )=\frac{3}{2} \\\\ \tan(\alpha +\beta )= \tan(135^{\circ})=\tan(90^{\circ}+45^{\circ})=-1 \\\\ \tan(\alpha +\beta )=\frac{\tan(\alpha )+\tan(\beta )}{1-\tan(\alpha )\tan(\beta )}\Rightarrow \tan(\alpha )=5 \\\\ \tan(\alpha )=\frac{\overline{AB}}{2}\Rightarrow \overline{AB} = 10\]
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K