MHB What is the area of rectangle ABCD?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Area Rectangle
Albert1
Messages
1,221
Reaction score
0
$Rectangle\,\,ABCD\,\,given\,\, point \,\,E,F \,\,on \,\,\overline {BC},\overline {AB}\,\,\, respectively$
$if \,\,\overline{BF}=\overline{CE}=4,\overline{BE}=2,point \,\, P \,\,is\,\, the \,\, intersection\,\ of\,\,\overline{AE}\,\,and\,\,\overline{CF},\,\, and \,\, \angle APC=\angle AEB+\angle CFB$
$please\,\,find \,\, the \,\, area \,\, of \,\, rectangle \,\,ABCD$
 
Mathematics news on Phys.org
My attempt:

View attachment 6288
Let
\[\alpha =\angle AEB\: \: \: and \: \: \: \beta =\angle CFB\]

Note, that

\[\angle APC = \angle FPE = \alpha +\beta\]

The quadrilateral, $BFPE$, has the angle sum:

\[90^{\circ}+2( \alpha +\beta )=360^{\circ}\]

Thus, $\alpha + \beta = 135^{\circ}$

$\alpha$ and $\beta$ are easily calculated:

\[\tan\beta =\frac{\overline{BC}}{\overline{BF}}=\frac{3}{2}\Rightarrow \: \: \beta =56,31^{\circ}\]

\[\alpha = 135^{\circ}-56,31^{\circ}=78,69^{\circ}\]

Finally, $FA$ is found:

\[\tan \alpha =\frac{4+\overline{FA}}{2}\Rightarrow \overline{FA}=6.\]

Thus, the rectangle, $ABCD$, has the area: $6 \cdot 10 = 60$.
 

Attachments

  • Area of rectangle ABCD.PNG
    Area of rectangle ABCD.PNG
    3.2 KB · Views: 114
lfdahl said:
My attempt:

Let
\[\alpha =\angle AEB\: \: \: and \: \: \: \beta =\angle CFB\]

Note, that

\[\angle APC = \angle FPE = \alpha +\beta\]

The quadrilateral, $BFPE$, has the angle sum:

\[90^{\circ}+2( \alpha +\beta )=360^{\circ}\]

Thus, $\alpha + \beta = 135^{\circ}$

$\alpha$ and $\beta$ are easily calculated:

\[\tan\beta =\frac{\overline{BC}}{\overline{BF}}=\frac{3}{2}\Rightarrow \: \: \beta =56,31^{\circ}\]

\[\alpha = 135^{\circ}-56,31^{\circ}=78,69^{\circ}\]

Finally, $FA$ is found:

\[\tan \alpha =\frac{4+\overline{FA}}{2}\Rightarrow \overline{FA}=6.\]

Thus, the rectangle, $ABCD$, has the area: $6 \cdot 10 = 60$.
Your answer is correct,thanks a lot .
But how do you get the value of $tan\,\alpha$ using a calculator ? if so try not
 
Here it is without aforementioned device (if such a device was actually used).

Using lfdahl's diagram and the result $\alpha+\beta=135^\circ$,

$$\tan(\alpha+\beta)=-1=\frac{\tan(\alpha)+\tan(\beta)}{1-\tan(\alpha)\tan(\beta)}=\frac{\tan(\alpha) + 3/2}{1-3\tan(\alpha)/2}\implies\tan(\alpha)=5$$

and the result follows.
 
Albert said:
Your answer is correct,thanks a lot .
But how do you get the value of $tan\,\alpha$ using a calculator ? if so try not
Without the use of a calculator:
\[\tan(\beta )=\frac{3}{2} \\\\ \tan(\alpha +\beta )= \tan(135^{\circ})=\tan(90^{\circ}+45^{\circ})=-1 \\\\ \tan(\alpha +\beta )=\frac{\tan(\alpha )+\tan(\beta )}{1-\tan(\alpha )\tan(\beta )}\Rightarrow \tan(\alpha )=5 \\\\ \tan(\alpha )=\frac{\overline{AB}}{2}\Rightarrow \overline{AB} = 10\]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top