What is the correct angle for the given 2D kinematics problem?

Click For Summary
SUMMARY

The discussion centers on solving a 2D kinematics problem involving a package falling from a height of 2400 m with a resultant velocity of 240 m/s. The user calculated the vertical velocity component (Voy = 120 m/s) and horizontal velocity component (Vox = 208 m/s), leading to a time of fall of approximately 38 seconds. The user initially derived an angle of 31 degrees using the wrong method but later recalculated using the correct final velocities, arriving at an angle of 43 degrees, which was close to the book's answer of 42 degrees. The discrepancy is attributed to rounding errors.

PREREQUISITES
  • Understanding of 2D kinematics equations
  • Knowledge of projectile motion principles
  • Familiarity with trigonometric functions, specifically arctangent
  • Ability to perform calculations involving velocity, distance, and time
NEXT STEPS
  • Study the derivation and application of the kinematic equations in projectile motion
  • Learn about the significance of initial and final velocity components in 2D motion
  • Explore the effects of rounding errors in physics calculations
  • Practice solving similar kinematics problems with varying parameters
USEFUL FOR

Students studying physics, particularly those focusing on kinematics, as well as educators seeking to clarify concepts related to projectile motion and angle calculations.

deserthobo
Messages
13
Reaction score
0

Homework Statement


http://img413.imageshack.us/img413/2919/physicsprobpr6.jpg

Xy=2400 m

Homework Equations



Xy=Voyt + 1/2at^2
Xx=1/2(Vox+Vx)t

The Attempt at a Solution



I calculated the vertical and horizontal velocity components of the given resultant velocity of 240 m/s.

Voy = 120 m/s
Vox = 208 m/s

then i used the vertical component, the given vertical distance and gravity to calculate the time needed for the package to fall to the ground.

t = 38 s

then i plugged this into Xx=1/2(Vox+Vx)t to find the horizontal distance the package travelled.

Xx= 3904

then i plugged this in with the given vertical distance into tan -1 (y/x) to get an angle of 31 degrees. but the book says 42 degrees! where did i go wrong guys?
 
Last edited by a moderator:
Physics news on Phys.org
you want the arc tan of the final velocities Vyf/Vxf
 
hmm why do i want the arc tan of the final velocities and not the arc tan of the distances?

also, arent the final velocites both = 0 since the package hits the ground
 
Last edited:
denverdoc, I think deserthobo is right is the arctan of distances, the 2.4 km and the horizontal range of the flare.
 
hmm...the time needed for the object to fallwell, vf = vo + at

vf = 0 so...
 
Last edited:
ok using vf=vo + at i got 12 s

i plugged 12 s into x = 1/2(vf + vo)t and then found the arc tan with that number and came up with 62 degrees. doesn't work out.
 
Last edited:
ok guys, if i plug in the horizontal velocity component which is 208 for

vf and vo

for

x=1/2(vf+vo)t

i will get 2704 m, which when plugged into arc tan (y/x) will give me the angle of 41..5 which when rounded up is 42 degrees. but does it make sense to plug in 208 for both vf and vo?
 
ok, t is not just 12, there are some extra digits as well (i'm horrible with sig digs as well :-P)

also, the horizontal velocity is constant

and velocity = distance/time

so, distance = velocity * time

you know the time, and you know the velocity
 
Last edited:
ok so i did everything following what mybsaccownt said and in the end i came up with 43 degrees. the book says 42 so this method is incorrect!
 
  • #10
deserthobo said:
ok so i did everything following what mybsaccownt said and in the end i came up with 43 degrees. the book says 42 so this method is incorrect!
I think you and the book are likely bothright, round off error. And i was all wet, in a hurry between patients , and shouldn't have posted.
 
  • #11
Are you a doctor? :)
 
  • #12
guilty as charged, tho a psychiatrist in the minds of many of his fellow physicians has lost any valid claim to the title
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
3K