What is the Correct Final Temperature in an Ice-Water Heat Transfer Experiment?

  • Thread starter Thread starter sunflowerzz
  • Start date Start date
  • Tags Tags
    Fusion Heat
Click For Summary
SUMMARY

The discussion centers on a heat transfer experiment involving the melting of ice in warm water. The initial water temperature was 40.2°C, and the final temperature calculated was -5.03°C, which is incorrect as it implies water exists in a liquid state below 0°C. Participants concluded that the final temperature must be positive, indicating that not all ice melted due to insufficient heat from the warm water. The experiment's outcome suggests a need to reassess the heat balance and account for the possibility of remaining ice.

PREREQUISITES
  • Understanding of heat transfer principles
  • Knowledge of specific heat capacities (C for water and ice)
  • Familiarity with the concept of heat of fusion (Lf)
  • Ability to perform mass and volume calculations in thermal experiments
NEXT STEPS
  • Calculate the exact amount of ice that melts using energy balance equations
  • Learn about the concept of thermal equilibrium in heat transfer experiments
  • Explore the implications of phase changes on temperature calculations
  • Investigate experimental error analysis in thermal experiments
USEFUL FOR

Students conducting thermal physics experiments, educators teaching heat transfer concepts, and anyone interested in understanding phase changes and energy conservation in thermodynamic systems.

sunflowerzz
Messages
25
Reaction score
0

Homework Statement


I did an experiment where crushed ice was added to a known volume of warm water and stirred until all the ice melted. My initial water temperature was 40.2°C and the final water temperature was 3.1°C. The known volume of water is 150 mL = 150 g and the melted ice was found to be 93 mL = 85.3 g.

The question is: What would be the final temperature if the ice was initially at -10°C when it was added to the water?

Homework Equations



Q = mLf where Lf = heat of fusion = 3.33 * 10^5 J/kg

C (water) = 4186 J/kg C
C(ice) = 2100 J/kg C

The Attempt at a Solution



This is what I have:

(heat to raise 85.3 g of ice from -10 to 0°C) + (heat to change 85.3 g of ice to water) + (heat to raise 85.3 g of water (melted ice) from 0°C to final temperature) = (heat lost by the 150 g of water from 40.2°C to final temperature)

[m(ice) * c(ice) * (0 - (-10))] + [m(ice) * Lf] + [m(ice)* c(water) * (T - 0)] = [m(water) * c(water) * (40.2 - T)]

T = - 5.03 °C

Is that right?
 
Physics news on Phys.org
For the final temperature to be subzero, some water would have to freeze. You did not account for that. So that cannot be right.
 
voko said:
For the final temperature to be subzero, some water would have to freeze. You did not account for that. So that cannot be right.

Ok since I had to stir the contents until all the ice melted - the final temperature has to be positive then?

- I took into account bringing the ice from - 10 to 0 (its melting point), then changing the ice from solid to liquid, and then the water from 0 to the final temperature

- this is all equal to the heat energy lost from the warm water from its initial temperature to the final unknown temperature

where did I go wrong in my equation?
 
You assume that the water has enough heat to bring all the ice to melting and melt it. But is that really so?
 
voko said:
You assume that the water has enough heat to bring all the ice to melting and melt it. But is that really so?

I'm not sure now?! I mean in the experiment, maybe it does theoretically? What else would I need to consider in my equation then?
 
"I'm not sure" is not a good answer. Find out, that is important. If the water does not have enough heat, what is the end result?
 
voko said:
"I'm not sure" is not a good answer. Find out, that is important. If the water does not have enough heat, what is the end result?

So that means all the added ice didn't melt. So the final product would be a mixture of ice and water. So the temperature that I calculated is just the final temperature of my end product of ice and water.
 
sunflowerzz said:
So that means all the added ice didn't melt. So the final product would be a mixture of ice and water.

Correct.

So the temperature that I calculated is just the final temperature of my end product of ice and water.

How can water exist in the liquid form at - 5.03 °C (and normal pressure)?
 
voko said:
Correct.

Ok

How can water exist in the liquid form at - 5.03 °C (and normal pressure)?

So I need to add something to my equation or is it all wrong? Since my initial temperature was not warm enough to melt all of the ice does that mean there is no final temperature for the question?
 
  • #10
Find out exactly how much ice melts. What is the temperature of the remaining ice? What is the temperature of the remaining water?
 
  • #11
sunflowerzz said:
So I need to add something to my equation or is it all wrong? Since my initial temperature was not warm enough to melt all of the ice does that mean there is no final temperature for the question?
This is an actual experiment, right? If so, the conclusion is that you made an experimental error. Either some ice remained or one of your measurements is wrong, one of:
- there was less ice
- there was more water,
- the water was hotter
Btw, you wrote
the melted ice was found to be 93 mL = 85.3 g
How was the 93mL determined? If it was by the total water at the end then that is indeed the volume of melted ice, so the mass of ice would be 93g. (That only makes the error worse, though.)
 
  • #12
haruspex said:
This is an actual experiment, right? If so, the conclusion is that you made an experimental error. Either some ice remained or one of your measurements is wrong, one of:
- there was less ice
- there was more water,
- the water was hotter
Btw, you wrote
How was the 93mL determined? If it was by the total water at the end then that is indeed the volume of melted ice, so the mass of ice would be 93g. (That only makes the error worse, though.)


Yea this was an actual experiment. The measured volume of water was 150 mL and the final volume after the ice was added was 243 mL which gave me 93 mL of ice added. So I used the density of ice to calculate the mass of ice
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
668
Replies
12
Views
1K
  • · Replies 17 ·
Replies
17
Views
6K
Replies
4
Views
2K
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
5K