What is the correct formula for acceleration for SHM

Click For Summary
SUMMARY

The discussion centers on calculating the maximum acceleration of a horizontal mass-spring oscillator undergoing simple harmonic motion (SHM) with a mass of 0.5 kg and a spring constant of 20 N/cm. Two formulas were used: a = -ω²x and a = -k(x/m), yielding different acceleration results of 0.13 m/s² and 480 m/s², respectively. The discrepancy arises from the angular frequency (ω) calculations, where ω = √(k/m) and ω = 2π/T produce conflicting values. The maximum restoring force was correctly calculated as 240 N, but the provided time period of 6 seconds appears inconsistent with the given parameters.

PREREQUISITES
  • Understanding of simple harmonic motion (SHM)
  • Familiarity with angular frequency (ω) and its calculations
  • Knowledge of Hooke's Law and spring constants
  • Ability to manipulate and solve equations involving acceleration and force
NEXT STEPS
  • Learn how to derive angular frequency (ω) from spring constant (k) and mass (m)
  • Study the relationship between period (T) and frequency (f) in SHM
  • Explore the implications of damping in oscillatory systems
  • Investigate the conditions under which different formulas for acceleration in SHM apply
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and oscillations, as well as educators seeking to clarify concepts related to simple harmonic motion and its calculations.

dilton_8000
Messages
4
Reaction score
1

Homework Statement


If the mass of a horizontal mass-spring oscillator undergoing SHM is 0.5kg and the force constant is 20N/cm, what is the maximum restoring force of the oscillator? And what is the maximum acceleration? (Time period is 6s and amplitude of oscillation is 12cm)

Homework Equations


Acceleration (a) = -w^2(x) and a = -k(x/m)

The Attempt at a Solution


When I use the given information and plug in the values, the answer is different for each equation. For the first equation, I get an answer of 0.13ms^-2, and for the latter I get 480ms^-2.

I don't seem to understand why they don't match and which one is correct. because I know we had to equate ma=-kx to derive the equation omega(w) = sqr.rt(k/m).

Any replies would be tremendously helpful. Thanks.

PS - This is my first post. :)
 
Physics news on Phys.org
Welcome to PF

I'm not entirely sure I understand what's confusing you:
You calculated the acceleration using a=-ω2x and got a different answer than when you used a=-kx/m?

But like you said, ω=√(k/m) so how can the equations be any different?
 
Thanks for the reply... Actually Yes, I did get two different answers for the different formulae. I think the problem lies with the value to ω. When I use

ω=√(k/m),
with k = 20N/cm, and m = 0.5kg,
I get 6.32 rad s^-1 as the answer.

Plugging in this value of ω in

a=-ω^2x gives me 4.80 ms^-2

But when I use

ω = 2π/T, with T = 6s,
I get the value 1.05 rad s^-1.

Thus, a=-ω^2x now gives me 0.13 ms^-2

I can't figure out why I get two different values. Shouldn't they match? And also, which one is correct?

PS - I used F =-k.x to find the maximum restoring force. I got 240 N which seems to be correct. Its the acceleration bit that's throwing me off.
 
Last edited:
  • Like
Likes   Reactions: Philethan
The given spring constant and mass imply a natural period of about a tenth of a second. This is a far cry from the suggested 6 seconds. No mention of damping is made (and it would have to be large indeed), so the given values seem self-contradictory.
 
  • Like
Likes   Reactions: dilton_8000, Philethan and Nathanael
Thanks so much... I was suspecting something must have been wrong with the question. BTW, when you say the information implies a natural period of a tenth of a second, how do you arrive at that conclusion? I don't think I know of any equations or relationships that helps me calculate that. Can you help? :)
 
dilton_8000 said:
Thanks so much... I was suspecting something must have been wrong with the question. BTW, when you say the information implies a natural period of a tenth of a second, how do you arrive at that conclusion? I don't think I know of any equations or relationships that helps me calculate that. Can you help? :)

Angular frequency ω is related to the period. You should know how ω relates to f, and how f relates to T.
 
Oh, ofcourse, silly me... :)... Thanks... I think I've figured it out... Cheers
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
21
Views
4K
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
5
Views
2K