Undergrad What is the correct statement of Varignon's theorem?

Click For Summary
SUMMARY

Varignon's theorem states that the moment sum of two or more concurrent and coplanar forces is equal to the moment of the resultant of those forces about a point. The theorem applies to both concurrent and parallel forces, with the resultant's location changing for parallel forces. It is important to distinguish between 'moment vector' and 'momentum vector', as the former is a vector quantity that can be analyzed using the right-hand rule. The theorem can also be extended to three dimensions, focusing on moments about an axis rather than a point.

PREREQUISITES
  • Understanding of vector mechanics
  • Familiarity with moment calculations
  • Knowledge of concurrent and coplanar forces
  • Basic grasp of three-dimensional force analysis
NEXT STEPS
  • Study the application of Varignon's theorem in engineering mechanics
  • Learn about the right-hand rule for determining moment vectors
  • Explore the extension of Varignon's theorem to three-dimensional systems
  • Investigate the differences between moment vectors and momentum vectors
USEFUL FOR

Students and professionals in engineering, physics, and applied mechanics who seek clarity on the application and implications of Varignon's theorem in force analysis.

Hak
Messages
709
Reaction score
56
What is the correct statement of Varignon's theorem?
On the net I find some discrepancies between the various statements: in some cases the vectors of the system referred to by the theorem must be applied at the same point or such that their lines of action pass through the same point, in other cases the vectors are generic; in some cases the theorem concerns the equality of momentum vectors, in other cases it concerns the equality of the magnitudes of the momentum vectors only...
I'm a bit confused. Thank you very much for any reply.
 
Physics news on Phys.org
Hak said:
What is the correct statement of Varignon's theorem?
On the net I find some discrepancies between the various statements: in some cases the vectors of the system referred to by the theorem must be applied at the same point or such that their lines of action pass through the same point, in other cases the vectors are generic; in some cases the theorem concerns the equality of momentum vectors, in other cases it concerns the equality of the magnitudes of the momentum vectors only...
I'm a bit confused. Thank you very much for any reply.

I understand your confusion, because all are 'sort of' correct.

The theorem states essentially that the moment sum of 2 or more concurrent and coplanar forces (that is, acting in the same plane and meeting or tending (line of action) to meet at a point) is equal to the moment of the resultant of those forces about that point.

If the force vectors are not concurrent, but rather, parallel, then the theorem still applies, however, the resultant (non zero) of the parallel forces changes the location of that resultant, which can be calculated using the theorem, but that is a circular argument.

You then mention 'momentum vector' but you meant to say 'moment vector', the direction of which is out of plane using the right hand rule. The sum of each of the force moments about a point is equal to the resultant moment vector about that point. Now since moment vectors are often considered as plus or minus depending on if they are clockwise or counterclockwise, you might say that the magnitudes are equal, but that is a bit weak since moments are vectors.

The theorem can be extended to three dimensions, but then you are talking moments about an axis instead of a point.


 
PhanthomJay said:
I understand your confusion, because all are 'sort of' correct.

The theorem states essentially that the moment sum of 2 or more concurrent and coplanar forces (that is, acting in the same plane and meeting or tending (line of action) to meet at a point) is equal to the moment of the resultant of those forces about that point.

If the force vectors are not concurrent, but rather, parallel, then the theorem still applies, however, the resultant (non zero) of the parallel forces changes the location of that resultant, which can be calculated using the theorem, but that is a circular argument.

You then mention 'momentum vector' but you meant to say 'moment vector', the direction of which is out of plane using the right hand rule. The sum of each of the force moments about a point is equal to the resultant moment vector about that point. Now since moment vectors are often considered as plus or minus depending on if they are clockwise or counterclockwise, you might say that the magnitudes are equal, but that is a bit weak since moments are vectors.

The theorem can be extended to three dimensions, but then you are talking moments about an axis instead of a point.
Thank you very much.
 
Copied from:
https://www.uobabylon.edu.iq/eprints/publication_12_18868_684.pdf
Varignon's theorem.jpg
Parallel vectors.jpg

Varignon's theorem.jpg


Parallel vectors.jpg
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
13
Views
3K
  • · Replies 18 ·
Replies
18
Views
11K
  • · Replies 32 ·
2
Replies
32
Views
2K