What Is the Correct Water Level for the Third Resonance in a Closed-Open Tube?

Click For Summary
SUMMARY

The correct water level for the third resonance in a closed-open tube with a vibrating tuning fork at 512 Hz is 83.7 cm. This conclusion is derived from the wave equation for a tube with one closed end, where the wavelength is determined by λ=4L/n. The speed of sound in air is taken as 343 m/s, leading to the calculation of the fundamental frequency and subsequent resonances. The misunderstanding arose from incorrectly identifying the value of n for the third resonance, as it does not directly correspond to the resonance number.

PREREQUISITES
  • Understanding of wave mechanics and resonance
  • Familiarity with the wave equation for closed-open tubes
  • Knowledge of frequency, wavelength, and the speed of sound
  • Ability to interpret standing wave diagrams
NEXT STEPS
  • Study the wave equation for closed-open tubes in detail
  • Learn how to draw standing wave diagrams for different resonance conditions
  • Explore the relationship between frequency, wavelength, and resonance in various mediums
  • Investigate the effects of varying water levels on sound resonance in tubes
USEFUL FOR

Students studying physics, particularly those focusing on wave mechanics, acoustics, and resonance phenomena in closed-open tube systems.

Any Help
Messages
79
Reaction score
2

Homework Statement



A vibrating tuning fork of frequency 512 Hz is held over a water column with one end closed and the other open. As the water level is allowed to fall, a loud sound (resonance) is heard at specific water levels. Assume you start with the tube full of water, and begin steadily lowering the water level. What is the water level (as measured from the top of the tube) for the third such resonance? Take the speed of sound in air to be 343 m/s.


  • A

    83.7 cm


  • B

    16.7 cm

  • C

    33.5 cm
  • wrong-icon.png


    D

    50.2 cm


  • E

    167 cm

Homework Equations



in a fundamental frequency (f):
λ=2L/n and f=n/2L .v for waves whose both ends are open
λ=4L/n and f=n/4L .v for waves whose one end closed and the second is open
n is a positive integer; n= 0,1,2,3,4,5,6...
v is the velocity
L is the length of string
λ is the wavelength

The Attempt at a Solution


here we have one open and other closed ends then we use λ=4L/n and f=n/4L .v
so f=512Hz, n=3 (third such resonance) and v=343m/sec
substitute in the equation
we get L equal 0.502m=50.2cm then it is D
but why the correct answer is A??
 
Last edited by a moderator:
Physics news on Phys.org
n = 3 is incorrect. The best thing to do for these types of problems is to draw a diagram of the standing wave for the situation. You can then determine L from the diagram.
 
Last edited:
TSny said:
n = 3 is incorrect. The best thing to for these types of problems is to draw a diagram of the standing wave for the situation. You can then determine L from the diagram.
I didn't get your point. How can I draw diagram for it? Besides why n=3 is not correct? what do they mean by the third such resonance?
 
Any Help said:
How can I draw diagram for it?
When the level of the water is at a position of resonance, what can you say about the positions of nodes and antinodes, especially at the top of the tube and at the top of the water? You can use this knowledge as a guide for drawing the various cases where you get resonance.
Besides why n=3 is not correct?
The n in the formula does not necessarily correspond to the number of the resonance. Thus n = 3 does not correspond to the third resonance in your situation.
What do they mean by the third such resonance?
Imagine the water level starts at the top of the tube. As the level of the water is lowered in the tube while the fork is vibrating, there will be certain positions of the level of the water that will cause the sound from the fork to resonate. The first level that produces a resonance is the first resonance. The next level of water that produces resonance is the second resonance. And so on.
 
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 7 ·
Replies
7
Views
6K