MHB What is the difference between log and ln?

AI Thread Summary
The difference between "log" and "ln" primarily lies in their bases: "ln(x)" denotes the natural logarithm with base e, while "log(x)" can refer to either base 10 or base e, depending on the context. In pre-calculus and elementary calculus, "log(x)" typically represents the logarithm base 10, whereas in higher-level mathematics, it often signifies the natural logarithm. In computer science, "log(x)" frequently refers to logarithm base 2. The differentiation rules for these logarithms also differ, with "ln(x)" having a simpler derivative compared to "log_{10}(x)." Understanding the context is crucial for correctly interpreting the notation used.
mathdad
Messages
1,280
Reaction score
0
In simple words, what is the difference between log and ln?
 
Mathematics news on Phys.org
In one notational convention:

$$\ln(x)=\log_{e}(x)$$

$$\log(x)=\log_{10}(x)$$

This is typically what you see in pre-calculus and elementary calculus courses.

In another convention:

$$\log(x)=\log_{e}(x)$$

This is what you'll find at W|A (but it will recognize ln as well). When you get into analysis, this is what you'll likely find used there.

In computer science, you may see:

$$\log(x)=\log_{2}(x)$$

So, it really depends on the context...and the notation "log" often means the most commonly used base in that particular environment.
 
MarkFL said:
In one notational convention:

$$\ln(x)=\log_{e}(x)$$

$$\log(x)=\log_{10}(x)$$

This is typically what you see in pre-calculus and elementary calculus courses.

In another convention:

$$\log(x)=\log_{e}(x)$$

This is what you'll find at W|A (but it will recognize ln as well). When you get into analysis, this is what you'll likely find used there.

In computer science, you may see:

$$\log(x)=\log_{2}(x)$$

So, it really depends on the context...and the notation "log" often means the most commonly used base in that particular environment.

Good information.
 
The reason why "[math]\log(x)= \ln(x)[/math]" in higher courses (calculus and beyond) and "[math]\log_{10}(x)[/math]" is just dropped is that [math]\ln(x)[/math] satisfies the simple differentiation rule [math]\frac{d\ln(x)}{dx}= \frac{1}{x}[/math] while if the base is 10, [math]\frac{d \log_{10}(x)}{dx}= \frac{1}{\ln(10)x}[/math].
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
5
Views
2K
Replies
44
Views
4K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
13
Views
2K
Replies
6
Views
5K
Back
Top