MHB What is the Domain for the Inverse of a One-to-One Function?

  • Thread starter Thread starter ardentmed
  • Start date Start date
  • Tags Tags
    Inverse Proofs
ardentmed
Messages
158
Reaction score
0
Hey guys,

I've a few more questions this time around from my problem set:

(Ignore question 2abc, I only need help with the first one)

Question:
08b1167bae0c33982682_5.jpg


For the first one, in order to prove that a function is one-to-one, f(x1) =/ f(x2) when x1 =/ x2. Thus, the horizontal test applies. So I said that:

(e^a)/(1+4^a) = (e^b)/(1+4^b)
This gave me (e^a)=(e^b)
Hence, a = b and f is one to one.

As for the inverse, I wrote out y=f(x), solved for x in terms of y, and expressed f^-1 as a function of x where x and y interchange. Ultimately, y=(e^x)/(1+4e^x) ended up becoming f^-1(x) = ln(-x/(4x-1))

As for the domain, I know that x< 0 to avoid non-real answers to comply with ln.

Hence the domain is (-infinity, 0)u(1/4, infinity). Which I highly doubt. Any ideas?
Thanks again. I really appreciate the help guys.
 
Mathematics news on Phys.org
Re: Inverse One to One Proofs Help Please

ardentmed said:
Hey guys,

I've a few more questions this time around from my problem set:

(Ignore question 2abc, I only need help with the first one)

Question:For the first one, in order to prove that a function is one-to-one, f(x1) =/ f(x2) when x1 =/ x2. Thus, the horizontal test applies. So I said that:

(e^a)/(1+4^a) = (e^b)/(1+4^b)
This gave me (e^a)=(e^b)
Hence, a = b and f is one to one.

This part you have right.

ardentmed said:
As for the inverse, I wrote out y=f(x), solved for x in terms of y, and expressed f^-1 as a function of x where x and y interchange. Ultimately, y=(e^x)/(1+4e^x) ended up becoming f^-1(x) = ln(-x/(4x-1))

As for the domain, I know that x< 0 to avoid non-real answers to comply with ln.

Hence the domain is (-infinity, 0)u(1/4, infinity). Which I highly doubt. Any ideas?
Thanks again. I really appreciate the help guys.

Your answer is close. While the inverse function is correct, the domain is off; it should be $(0, 1/4)$. The domain of $f^{-1}$ is the set of points $x$ such that $x/(1 - 4x) > 0$. So $x$ belongs to the domain of $f^{-1}$ if and only if

(1) $x > 0$ and $1-4x > 0$, or

(2) $x < 0$ and $1-4x < 0$.

In case (1), $x > 0$ and $x < 1/4$, which is equivalent to saying $x \in (0,1/4)$. In case (2), $x < 0$ and $x > 1/4$, which cannot both happen. So the domain of $f^{-1}$ is the set of points in (1), which is (0, 1/4).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top