What is the equation for helical path length around a torus?

  • Thread starter Thread starter BasicWill
  • Start date Start date
  • Tags Tags
    Orbits
Click For Summary
SUMMARY

The equation for the helical path length around a torus can be derived using a parameterization of the toroidal surface, specifically a torus with a cross-section radius \( r \) and a central circle radius \( R \) where \( R > r \). To find the helical path length, one must differentiate the parameterization with respect to its two parameters to obtain tangent vectors. A linear combination with undetermined coefficients is then used to create a vector field on the torus, leading to the identification of integral curves that define the helical path.

PREREQUISITES
  • Understanding of toroidal geometry and parameterization
  • Knowledge of calculus, specifically differentiation and integral curves
  • Familiarity with vector fields and linear combinations
  • Basic concepts of pitch in helical structures
NEXT STEPS
  • Study the parameterization of toroidal surfaces in detail
  • Learn about tangent vectors and their applications in geometry
  • Research integral curves and their significance in vector fields
  • Explore the concept of pitch in helical paths and its mathematical implications
USEFUL FOR

Mathematicians, physicists, and engineers interested in geometric analysis, particularly those working with toroidal structures and helical paths.

BasicWill
Messages
2
Reaction score
0
Does anyone know the equation for the helical path length around a torus?
I need an analytical expression, not an approximation.

Thanks
 
Physics news on Phys.org
Hint: write a parameterization of your surface (torus of cross-section radius r centered on a circle with radius R > r). Find the tangent vectors to this surface by differentiating wrt the two parameters of your parameterization. Consider a linear combination with undetermined coefficients to obtain a vector field lying in the torus. (Did you have a particular "pitch" in mind?) Find the integral curves.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
9
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K