Re: Evaluate ⌊x⌋+⌊y⌋+⌊z⌋
[sp]Let $k=xyz$. The polynomial with roots $x,y,z$ is then $\lambda^3 - 6\lambda^2 + 9\lambda - k.$
You can see from the graph that the only values of $k$ for which the equation $k = \lambda^3 - 6\lambda^2 + 9\lambda$ has three real roots are $0\leqslant k\leqslant4.$ As $k$ increases from $0$ to $4$, we can tabulate the values of the roots as follows, where the $+$ and $-$ subscripts mean addtition or subtraction of a small amount (less than $1/2$). $$\begin{array}{c|c|c|c}k&x,y,z & \lfloor x\rfloor,\, \lfloor y\rfloor,\, \lfloor z\rfloor & \lfloor x\rfloor+\lfloor y\rfloor+\lfloor z\rfloor \\ \hline 0& 0,\,3,\,3 &0,\,3,\,3 & 6 \\ 1 & 0_+,\,3_-,\,3_+ & 0,\,2,\,3 & 5 \\ 2 & 0_+,\,2,\,4_- & 0,\,2,\,3 & 5 \\ 3 & 0_+,\,2_-,\,4_- & 0,\,1,\,3 & 4 \\ 4& 1,\,1,\,4 & 1,\,1,\,4 & 6 \end{array}$$ The only possible values for $\lfloor x\rfloor+\lfloor y\rfloor+\lfloor z\rfloor$ are $4$, $5$ and $6$. If I read the question correctly, it asks for the sum of those values, which is $15.$[/sp]
Edit. I like Serena beat me by just seconds!