MHB What is the Formula for the Area of a Triangle and When Does Equality Hold?

  • Thread starter Thread starter melese
  • Start date Start date
Click For Summary
The area of a triangle with sides a, b, and c is bounded by the inequality P ≤ (√3/4)(abc)^(2/3). Equality holds specifically for equilateral triangles, where all sides are equal. The proof involves using Heron's formula and properties of trigonometric functions. The discussion emphasizes the significance of the triangle's shape in determining area efficiency. Understanding this relationship is crucial for geometric optimization and applications in various fields.
melese
Messages
19
Reaction score
0
3. Prove that for any triangle with sides $\displaystyle a,b,c$ and area $P$ the following
inequality holds: $\displaystyle P\leq\frac{\sqrt3}{4}(abc)^{2/3}$
Find all triangles for which equality holds.
 
Mathematics news on Phys.org
Hint: A known formula, involving a trigonometric function, for the area of triangles.

solution:

If $\alpha,\beta,\gamma$ (WLOG $\alpha\leq\beta\leq\gamma$) are respectively the angles opposite to $a,b,c$, then $P$ is equal to anyone of $\displaystyle\frac{1}{2}ab\cdot\sin(\gamma),\frac{1}{2}ac\cdot\sin(\beta),\frac{1}{2}bc\cdot\sin( \alpha)$. Hence, $\displaystyle P^3=\frac{1}{8}(abc)^2\sin(\alpha)\sin(\beta)\sin(\gamma)$.

To get an inequality in the right direction, we try to determine the maximum value $m$ of $\sin(\alpha)\sin(\beta)\sin(\gamma)$. Since $\sin$ increases in $[0,\pi/2]$, we have $\sin(\alpha)\leq\sin(\beta)\leq\sin(\gamma)$. So it's not difficult to see that we need to maximize $\alpha$, and that happens for $\alpha=\pi/3$ ($\alpha+\alpha+\alpha\leq\alpha+\beta+\gamma=\pi$). Now, obviously $\alpha=\beta=\gamma=\pi/3$, and hence $\displaystyle m=\sin(\pi/3)\sin(\pi/3)\sin(\pi/3)=(\frac{\sqrt3}{2})^3$.

Finally, $\displaystyle P\leq(\frac{1}{8}(abc)^2m)^{1/3}=\frac{\sqrt3}{4}(abc)^{2/3}$.
Equality occurs precisely for equilateral triangles.
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K