MHB What is the Formula for the Area of a Triangle and When Does Equality Hold?

  • Thread starter Thread starter melese
  • Start date Start date
melese
Messages
19
Reaction score
0
3. Prove that for any triangle with sides $\displaystyle a,b,c$ and area $P$ the following
inequality holds: $\displaystyle P\leq\frac{\sqrt3}{4}(abc)^{2/3}$
Find all triangles for which equality holds.
 
Mathematics news on Phys.org
Hint: A known formula, involving a trigonometric function, for the area of triangles.

solution:

If $\alpha,\beta,\gamma$ (WLOG $\alpha\leq\beta\leq\gamma$) are respectively the angles opposite to $a,b,c$, then $P$ is equal to anyone of $\displaystyle\frac{1}{2}ab\cdot\sin(\gamma),\frac{1}{2}ac\cdot\sin(\beta),\frac{1}{2}bc\cdot\sin( \alpha)$. Hence, $\displaystyle P^3=\frac{1}{8}(abc)^2\sin(\alpha)\sin(\beta)\sin(\gamma)$.

To get an inequality in the right direction, we try to determine the maximum value $m$ of $\sin(\alpha)\sin(\beta)\sin(\gamma)$. Since $\sin$ increases in $[0,\pi/2]$, we have $\sin(\alpha)\leq\sin(\beta)\leq\sin(\gamma)$. So it's not difficult to see that we need to maximize $\alpha$, and that happens for $\alpha=\pi/3$ ($\alpha+\alpha+\alpha\leq\alpha+\beta+\gamma=\pi$). Now, obviously $\alpha=\beta=\gamma=\pi/3$, and hence $\displaystyle m=\sin(\pi/3)\sin(\pi/3)\sin(\pi/3)=(\frac{\sqrt3}{2})^3$.

Finally, $\displaystyle P\leq(\frac{1}{8}(abc)^2m)^{1/3}=\frac{\sqrt3}{4}(abc)^{2/3}$.
Equality occurs precisely for equilateral triangles.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top