What is the full EM + matter lagrangian?

  • Context: Graduate 
  • Thread starter Thread starter pellman
  • Start date Start date
  • Tags Tags
    Em Lagrangian Matter
Click For Summary
SUMMARY

The forum discussion centers on deriving the Lagrangian for a system comprising electromagnetic (EM) fields and charged matter, specifically seeking a classical analog to the quantum field theory Lagrangian density for spin-0 charges and EM fields. The proposed Lagrangian density includes terms for the action of the field on charges and the influence of the charges as sources of the field. The discussion highlights the expression: -m ∫ dτ √(-gμνμν) + ∫ dx4 jμ Aμ - (1/4) ∫ d4x Fαβ Fαβ, which encapsulates the interaction between point charges and the EM field.

PREREQUISITES
  • Understanding of classical electrodynamics
  • Familiarity with Lagrangian mechanics
  • Knowledge of quantum field theory concepts
  • Basic grasp of calculus of variations
NEXT STEPS
  • Research classical Lagrangian mechanics for systems with both discrete particles and continuous fields
  • Study the derivation of Euler-Lagrange equations from action principles
  • Explore the use of Dirac delta functions in field theory
  • Investigate continuous charge distributions and their interaction with EM fields
USEFUL FOR

The discussion is beneficial for theoretical physicists, researchers in classical electrodynamics, and students studying quantum field theory who seek to understand the interplay between charged matter and electromagnetic fields in a Lagrangian framework.

pellman
Messages
683
Reaction score
6
This is a followup to the old thread What are the FULL classical electrodynamic equations? which never really provided a satisfactory answer.

I have decided to phrase it perhaps in a more straightforward manner. Given that we have the EM field, or the equivalent potential field, and charged matter. What is the lagrangian for this system?

I will be happy if given in terms of point charges or charge density. But it has to include both the action of the field on the charges and the fact that the sources of the field are those same charges. Writing down the lagrangian for an EM field with fixed sources or point particles influenced by a fixed field is easy and in every textbook.

Has anyone ever even seen what I am asking for here?

For an example of what I am talking about, here is the lagrangian density for spin 0 charges + EM field from quantum field theory. (This is just conceptual. Signs and constants might be wrong. H-bar and c are set to 1.)

(i\partial_{\mu}\phi^{\dag}-eA_{\mu})(i\partial^{\mu}\phi-eA^{\mu}) + m\phi^{\dag}\phi -\frac{1}{16}F^{\alpha\beta}F_{\alpha\beta}

I am looking for the classical analog to this lagrangian.
 
Last edited:
Physics news on Phys.org
pellman said:
This is a followup to the old thread What are the FULL classical electrodynamic equations? which never really provided a satisfactory answer.

I have decided to phrase it perhaps in a more straightforward manner. Given that we have the EM field, or the equivalent potential field, and charged matter. What is the lagrangian for this system?

I will be happy if given in terms of point charges or charge density. But it has to include both the action of the field on the charges and the fact that the sources of the field are those same charges. Writing down the lagrangian for an EM field with fixed sources or point particles influenced by a fixed field is easy and in every textbook.

Has anyone ever even seen what I am asking for here?

For an example of what I am talking about, here is the lagrangian density for spin 0 charges + EM field from quantum field theory. (This is just conceptual. Signs and constants might be wrong. H-bar and c are set to 1.)

(i\partial_{\mu}\phi^{\dag}-eA_{\mu})(i\partial^{\mu}\phi-eA^{\mu}) + m\phi^{\dag}\phi -\frac{1}{16}F^{\alpha\beta}F_{\alpha\beta}

I am looking for the classical analog to this lagrangian.

-m \int d\tau \sqrt{- g_{\mu \nu} \dot{x}^\mu \dot{x}^\nu} + \int dx^4 j^\mu A_\mu - \frac{1}{4} \int d^4 x F^{\alpha \beta} F_{\alpha \beta}

with the current being
q \int d\tau ~ \delta^4(x-x(\tau)) \frac{dx^\mu (\tau)}{d\tau}

(I'm not sure of all the signs)
Is that what you were looking for?
 
Yep. That looks like it. But let me ponder it a bit. Might be a couple days. Please check back then so that I can ask you half a dozen questions. :biggrin:

But, really. Thanks!
 
Last edited:
pellman said:
Yep. That looks like it. But let me ponder it a bit. Might be a couple days. Please check back then so that I can ask you half a dozen questions. :biggrin:

But, really. Thanks!

You're very welcome! :smile:
 
pellman said:
Yep. That looks like it. But let me ponder it a bit. Might be a couple days. Please check back then so that I can ask you half a dozen questions. :biggrin:

But, really. Thanks!

Looking at the other thread I noticed that the Lagrangian had already been given! (by two people)
 
kdv said:
-m \int d\tau \sqrt{- g_{\mu \nu} \dot{x}^\mu \dot{x}^\nu} + \int dx^4 j^\mu A_\mu - \frac{1}{4} \int d^4 x F^{\alpha \beta} F_{\alpha \beta}

with the current being
\int d\tau ~ \delta^4(x-x(\tau)) \frac{dx^\mu (\tau)}{d\tau}

(I'm not sure of all the signs)
Is that what you were looking for?

kdv, I haven't much chance for this yet. But I can clarify a couple things first, please. What you have provided is the action not the lagrangian or lagrangian density itself, right?

So the interaction term written out fully looks like

q \int dx'^4 \int d\tau ~ \delta^4(x'-x(\tau)) \frac{dx^\mu (\tau)}{d\tau} A_\mu(x')

correct? I put in a prime on the x as variable of integration because its double use as particle position confused me, esp in the delta function. Am I ok so far?

I'm trying to get to the point where I could understand how to write the Euler-Lagrange equations from this action.
 
Last edited:
pellman said:
kdv, I haven't much chance for this yet. But I can clarify a couple things first, please. What you have provided is the action not the lagrangian or lagrangian density itself, right?
yes
So the interaction term written out fully looks like

q \int dx'^4 \int d\tau ~ \delta^4(x'-x(\tau)) \frac{dx^\mu (\tau)}{d\tau} A_\mu(x')

correct? I put in a prime on the x as variable of integration because its double use as particle position confused me, esp in the delta function. Am I ok so far?

This is correct.

Note that the Dirac delta can be used to do the four-dimensional integral which leaves only a one-dimensional integral over the path of the particle. This si what you see in some books: the interaction part of the action is an integral over the path of the particle, not a four-dimensional integral.
 
kdv said:
Note that the Dirac delta can be used to do the four-dimensional integral which leaves only a one-dimensional integral over the path of the particle. This si what you see in some books: the interaction part of the action is an integral over the path of the particle, not a four-dimensional integral.

I don't know if I would want to do that. It gives the correct value for the action of course, but wouldn't it affect being able to make a variation in the system and looking for the extremum of the action integral?

The main problem is rather general: how to deal with a system consisting of both discrete particles and continuous fields from a calculus of variations approach? My curiosity is aroused here. I'm sure this situation must arise in other contexts and has been dealt with. I'm going to dig around in my books.

The other approach is to use continuous charge distributions. Then the interaction is \int dx^4 j^\mu A_\mu, period. We would just have to replace the free matter term for point particles with one in terms of j.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
512
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
612
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K