What is the function that describes this Asymptotic behaviour?

  • I
  • Thread starter Arman777
  • Start date
  • #1
2,170
189
I would like to find a function such that for

$$a(x) \rightarrow 1~\text{for}~(x \gg x_c)$$

$$a(x) \rightarrow f(x)~\text{for}~(x \ll x_c)$$

What could be the ##a(x)## ? I have tried some simple functions but could not figure it out. Maybe I am just blind to see the correct result.
 

Answers and Replies

  • #2
fresh_42
Mentor
Insights Author
2022 Award
17,645
18,339
I would like to find a function such that for

$$a(x) \rightarrow 1~\text{for}~(x \gg x_c)$$

$$a(x) \rightarrow f(x)~\text{for}~(x \ll x_c)$$

What could be the ##a(x)## ? I have tried some simple functions but could not figure it out. Maybe I am just blind to see the correct result.
This is far too vague to give a reasonable answer. How about
$$
a(x):=\begin{cases} f(x)&\text{ if }x\leq x_c\\1&\text{ if }x> x_c \end{cases}
$$
 
  • #4
2,170
189
What if I say, finding simplest possible $a(x)$. Is that makes sense ? Of course there could be infinetly many functions, but I am looking for least complicated/simplest one
 
  • #5
36,706
8,699
What if I say, finding simplest possible $a(x)$. Is that makes sense ? Of course there could be infinetly many functions, but I am looking for least complicated/simplest one
The one that @fresh_42 suggested is pretty simple. Without knowing what f(x) is, you probably won't find anything simpler than that.
 
  • #6
2,170
189
No, I am looking for one single function, I mean. When I take the asymptotic behavior, it produces the results I have mentioned.

I am not looking for the same answer in a different form.
 
  • #7
FactChecker
Science Advisor
Homework Helper
Gold Member
7,592
3,314
Do you want it to be a continuous function of x?
Consider this:
calculate ##r = (\arctan(x)/\pi + 0.5)##
calculate ##h(x) = f(x)(1-r) + r##
 
Last edited:
  • #8
2,170
189
Okay, I have found. It seems the answer is

For $$a(x) = \frac{f(x)x_c - x}{x_c - x}$$
$$a(x) = 1~\text{for}~x \gg x_c$$
$$a(x) = f(x)~\text{for}~x \ll x_c$$
 
  • #9
mathman
Science Advisor
8,087
550
Try ##a(x)=\frac{2.arctan(x)}{\pi}##
 
  • #10
fresh_42
Mentor
Insights Author
2022 Award
17,645
18,339
Okay, I have found. It seems the answer is

For $$a(x) = \frac{f(x)x_c - x}{x_c - x}$$
$$a(x) = 1~\text{for}~x \gg x_c$$
$$a(x) = f(x)~\text{for}~x \ll x_c$$
Still heavily depends on ##f(x)##. And what do you mean by ##x\ll x_c##? What if ##x\to -\infty ##?

This doesn't solve your problem unless you make several assumptions on ##f(x)## which you didn't tell us about!
 
  • #11
2,170
189
Well, currently we don't know the ##f(x)## but we know that it does not contain ##x_c##. BTW ##x_c## is just a constant, and ##x## ranges from ##[0, \infty)##. I am not interested the behaviour of the ##f(x)## as ##x \ll x_c## I am just interested in the behaviour of the ##a(x)## as a whole. ##f(x)## could also be a some constant. Or linearly dependent on ##x## but its not much complicated...

I guess you mean that if we open up the ##f(x)##, the behavior of the asymptotes will change?
 
  • #12
fresh_42
Mentor
Insights Author
2022 Award
17,645
18,339
I guess you mean that if we open up the ##f(x)##, the behavior of the asymptotes will change?

Yes. I haven't checked in detail all possibilities, but it seemed you assumed that ##f(x)## is bounded in some sense and continuous. Otherwise, it could "overwrite" the rest of the formula.
 
  • #13
2,170
189
Yes. I haven't checked in detail all possibilities, but it seemed you assumed that ##f(x)## is bounded in some sense and continuous. Otherwise, it could "overwrite" the rest of the formula.
Well yes its. Also it seems that the f(x) must be in the 0th order or 1st order. Otherwise the asymptotic relation fails. But of course this is true for this function. I am not sure we can find a more general one
 
  • #14
robphy
Science Advisor
Homework Helper
Insights Author
Gold Member
6,639
2,010
Okay, I have found. It seems the answer is

For $$a(x) = \frac{f(x)x_c - x}{x_c - x}$$
$$a(x) = 1~\text{for}~x \gg x_c$$
$$a(x) = f(x)~\text{for}~x \ll x_c$$
You might like to play around with
https://www.desmos.com/calculator/da9wzphuxc

[You can rescale the axes by shift-drag near each axis.]

1632813294811.png
 

Suggested for: What is the function that describes this Asymptotic behaviour?

  • Last Post
2
Replies
51
Views
1K
Replies
38
Views
1K
Replies
8
Views
564
  • Last Post
Replies
5
Views
504
  • Last Post
Replies
3
Views
462
Replies
4
Views
383
Replies
7
Views
2K
Replies
2
Views
456
Replies
1
Views
421
Top