What is the general solution to the differential equation $xy'-2y =x^2$?

Click For Summary
SUMMARY

The general solution to the differential equation \(xy' - 2y = x^2\) is \(y(x) = x^2(\ln|x| + C)\), derived by first transforming the equation into a first-order linear form. By multiplying through by \(x^{-3}\), the equation simplifies to \(\frac{d}{dx}(x^{-2}y) = x^{-1}\). Integrating both sides leads to the solution. Additionally, the equation can be approached as a Cauchy-Euler equation, allowing for substitution methods to reach the same conclusion.

PREREQUISITES
  • Understanding of first-order linear differential equations
  • Familiarity with integration techniques
  • Knowledge of Cauchy-Euler equations
  • Basic logarithmic properties
NEXT STEPS
  • Study methods for solving first-order linear differential equations
  • Learn about Cauchy-Euler equations and their solutions
  • Explore integration techniques for differential equations
  • Investigate substitution methods in solving differential equations
USEFUL FOR

Mathematicians, engineering students, and anyone studying differential equations or seeking to enhance their problem-solving skills in calculus.

Albert1
Messages
1,221
Reaction score
0
Please find the general solution of :

$xy'-2y =x^2$
 
Physics news on Phys.org
Multiplying through by $x^{-3}$ where $x\ne0$, we obtain:

$$x^{-2}y'-2x^{-3}y=x^{-1}$$

Now we may observe that the left have side is the derivative of a product:

$$\frac{d}{dx}\left(x^{-2}y \right)=x^{-1}$$

Integrate with respect to $x$:

$$\int\frac{d}{dx}\left(x^{-2}y \right)\,dx=\int x^{-1}\,dx$$

$$x^{-2}y=\ln|x|+C$$

Thus, we find the general solution is:

$$y(x)=x^2\left(\ln|x|+C \right)$$
 
Just because it might not be obvious why we should multiply by [math]\displaystyle \begin{align*} x^{-3} \end{align*}[/math]...

[math]\displaystyle \begin{align*} x\,\frac{dy}{dx} - 2y &= x^2 \\ \frac{dy}{dx} - \frac{2}{x}\,y &= x \end{align*}[/math]

which is now a first order linear DE. The integrating factor is

[math] \displaystyle \begin{align*} e^{ \int{ -\frac{2}{x} \, dx } } = e^{ -2\ln{(x)} } = e^{ \ln{ \left( x^{-2} \right) } } = x^{-2} \end{align*} [/math]

so multiplying both sides of our linear DE by the integrating factor gives

[math]\displaystyle \begin{align*} x^{-2}\,\frac{dy}{dx} - 2x^{-3}\,y &= \frac{1}{x} \end{align*}[/math]

which is the same as multiplying the original equation by [math]\displaystyle \begin{align*} x^{-3} \end{align*}[/math].
 
Another method is to recognize that the equation is Cauchy-Euler. Hence, you can substitute $y=x^{r}$ and solve for $r$. You will need reduction of order to get the logarithm function. Alternatively, the substitution $t=\ln(x)$ renders the equation first-order linear with constant coefficients, at which point you employ the usual methods.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K