MHB What is the Greek Notation in Tangent Transformations?

AI Thread Summary
The discussion focuses on the Greek notation used in tangent transformations, specifically in the context of periodic functions. The equations presented illustrate how to express a tangent function in terms of amplitude (A), phase shift (PS), and period (T). The transformation parameters are defined, with T being the period calculated as T = φ/ω, and PS representing the phase shift. An example is provided with specific values, demonstrating the application of the notation. The inquiry about the use of Greek notation suggests a need for clarification on its significance in mathematical expressions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{got ? on the Greek notation. if Period = T}$
\begin{align}
\displaystyle
Y_{tan}&=A\tan\left[\omega\left(x-\frac{\phi}{\omega} \right) \right]+B
\implies A\tan\left(\omega x-\phi \right)+B \\
T&=\left(\frac{\phi}{\omega}\right) \\
PS&=\phi
\end{align}
$\textsf{so on:}$
\begin{align}
\displaystyle
Y_{49}&=1+\frac{1}{2}\tan\left({2x-\frac{\pi}{4}}\right) \\
T&=\frac{\pi}{2} \\
PS&=\frac{\pi}{4}
\end{align} $\textsf{not sure on this one} $
:cool:
 
Last edited:
Mathematics news on Phys.org
What is your question?
 
HallsofIvy said:
What is your question?

why is this in greek?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
11
Views
2K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
7
Views
1K
Replies
2
Views
10K
Replies
4
Views
11K
Replies
5
Views
1K
Back
Top