MHB What is the imaginary part of the given function?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Imaginary
AI Thread Summary
The discussion focuses on deriving the imaginary part of the function f(z) = (z+i)/(iz+1). It demonstrates that Im(f(z)) can be expressed as (1 - |z|^2)/|z - i|^2 by manipulating the function and applying complex conjugate properties. The calculations involve substituting z with its real and imaginary components and simplifying the resulting expressions. The final result confirms the relationship between the imaginary part of f(z) and the magnitudes of z and z - i. This analysis highlights the connection between complex functions and their geometric interpretations in the complex plane.
Poirot1
Messages
243
Reaction score
0
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}
 
Last edited by a moderator:
Mathematics news on Phys.org
$$f(z)=\frac{z+i}{iz+1}$$.

We know that $$z\cdot \bar{z} = |z|^2$$

$$f(z)=\frac{z+i}{iz+1}= \frac{1-iz}{z-i}=\frac{(1-iz)(\bar{z}+i)}{|z-i|^2}=\frac{\bar{z}+i+z-i|z|^2}{|z-i|^2}$$

$$\text{Im} \left( \frac{2\text{Re}(z)+i(1-|z|^2)}{|z-i|^2}\right) = \frac{1-|z|^2}{|z-i|^2}$$
 
Poirot said:
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}

[math]\displaystyle \begin{align*} z &= x + i\,y \textrm{ where } x, y \in \mathbf{R} \\ \\ f(z) &= \frac{z + i}{i\,z + 1} \\ &= \frac{x + i\,y + i}{i\left( x + i\,y \right) + 1} \\ &= \frac{x + i \left( 1 + y \right) }{ 1 - y + i\,x } \\ &= \frac{\left[ x + i \left( 1 + y \right) \right] \left( 1 - y - i\,x \right) }{ \left( 1 - y + i\,x \right) \left( 1 - y - i\,x \right) } \\ &= \frac{ x \left( 1 - y \right) - i\, x^2 + i \left( 1 + y \right) \left( 1 - y \right) + x \left( 1 + y \right) }{ \left( 1 - y \right) ^2 + x^2 } \\ &= \frac{2x + i \left( 1 - x^2 - y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \\ &= \frac{2x}{ x^2 + \left( 1 - y \right)^2 } + i \left[ \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right)^2 } \right] \end{align*}[/math]

So therefore

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \end{align*}[/math]

And since [math]\displaystyle \begin{align*} \left| z \right|^2 = x^2 + y^2 \end{align*}[/math] and [math]\displaystyle \begin{align*} \left| z - i \right| ^2 = x^2 + \left( y - 1 \right) ^2 = x^2 + \left( 1 - y \right) ^2 \end{align*}[/math] that means

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{ 1 - \left| z \right| ^2 }{ \left| z - i \right| ^2 } \end{align*}[/math]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top