What is the imaginary part of the given function?

  • Context: MHB 
  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Imaginary
Click For Summary
SUMMARY

The imaginary part of the function \( f(z) = \frac{z+i}{iz+1} \) is expressed as \( \text{Im}(f(z)) = \frac{1 - |z|^2}{|z-i|^2} \). This conclusion is derived through the application of complex function properties, specifically using the formula \( \text{Im}(f(z)) = \frac{1}{2i}(f(z) - \overline{f(z)}) \). The derivation involves manipulating the function and its conjugate, ultimately confirming the relationship between the imaginary part and the magnitudes of \( z \) and \( z-i \).

PREREQUISITES
  • Understanding of complex functions and their properties
  • Familiarity with complex conjugates and their applications
  • Knowledge of the modulus of complex numbers
  • Ability to manipulate algebraic expressions involving complex variables
NEXT STEPS
  • Study the properties of complex functions, focusing on transformations and mappings
  • Learn about the geometric interpretation of complex numbers and their magnitudes
  • Explore the concept of analytic functions and their implications in complex analysis
  • Investigate the use of the Cauchy-Riemann equations in determining function properties
USEFUL FOR

Mathematicians, physics students, and anyone studying complex analysis or working with complex functions in engineering and applied mathematics.

Poirot1
Messages
243
Reaction score
0
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}
 
Last edited by a moderator:
Physics news on Phys.org
$$f(z)=\frac{z+i}{iz+1}$$.

We know that $$z\cdot \bar{z} = |z|^2$$

$$f(z)=\frac{z+i}{iz+1}= \frac{1-iz}{z-i}=\frac{(1-iz)(\bar{z}+i)}{|z-i|^2}=\frac{\bar{z}+i+z-i|z|^2}{|z-i|^2}$$

$$\text{Im} \left( \frac{2\text{Re}(z)+i(1-|z|^2)}{|z-i|^2}\right) = \frac{1-|z|^2}{|z-i|^2}$$
 
Poirot said:
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}

[math]\displaystyle \begin{align*} z &= x + i\,y \textrm{ where } x, y \in \mathbf{R} \\ \\ f(z) &= \frac{z + i}{i\,z + 1} \\ &= \frac{x + i\,y + i}{i\left( x + i\,y \right) + 1} \\ &= \frac{x + i \left( 1 + y \right) }{ 1 - y + i\,x } \\ &= \frac{\left[ x + i \left( 1 + y \right) \right] \left( 1 - y - i\,x \right) }{ \left( 1 - y + i\,x \right) \left( 1 - y - i\,x \right) } \\ &= \frac{ x \left( 1 - y \right) - i\, x^2 + i \left( 1 + y \right) \left( 1 - y \right) + x \left( 1 + y \right) }{ \left( 1 - y \right) ^2 + x^2 } \\ &= \frac{2x + i \left( 1 - x^2 - y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \\ &= \frac{2x}{ x^2 + \left( 1 - y \right)^2 } + i \left[ \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right)^2 } \right] \end{align*}[/math]

So therefore

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \end{align*}[/math]

And since [math]\displaystyle \begin{align*} \left| z \right|^2 = x^2 + y^2 \end{align*}[/math] and [math]\displaystyle \begin{align*} \left| z - i \right| ^2 = x^2 + \left( y - 1 \right) ^2 = x^2 + \left( 1 - y \right) ^2 \end{align*}[/math] that means

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{ 1 - \left| z \right| ^2 }{ \left| z - i \right| ^2 } \end{align*}[/math]
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
948
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K