MHB What is the imaginary part of the given function?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Imaginary
Click For Summary
The discussion focuses on deriving the imaginary part of the function f(z) = (z+i)/(iz+1). It demonstrates that Im(f(z)) can be expressed as (1 - |z|^2)/|z - i|^2 by manipulating the function and applying complex conjugate properties. The calculations involve substituting z with its real and imaginary components and simplifying the resulting expressions. The final result confirms the relationship between the imaginary part of f(z) and the magnitudes of z and z - i. This analysis highlights the connection between complex functions and their geometric interpretations in the complex plane.
Poirot1
Messages
243
Reaction score
0
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}
 
Last edited by a moderator:
Mathematics news on Phys.org
$$f(z)=\frac{z+i}{iz+1}$$.

We know that $$z\cdot \bar{z} = |z|^2$$

$$f(z)=\frac{z+i}{iz+1}= \frac{1-iz}{z-i}=\frac{(1-iz)(\bar{z}+i)}{|z-i|^2}=\frac{\bar{z}+i+z-i|z|^2}{|z-i|^2}$$

$$\text{Im} \left( \frac{2\text{Re}(z)+i(1-|z|^2)}{|z-i|^2}\right) = \frac{1-|z|^2}{|z-i|^2}$$
 
Poirot said:
Show that,

\[\mbox{Im}(f(z))=\frac{1-|z|^2}{|z-i|^2} \mbox{ where }f(z)=\frac{z+i}{iz+1}\]

\begin{eqnarray}

\mbox{Im}(f(z))&=&\frac{1}{2i}(f(z)-\overline{f(z)})\\

&=&\frac{1}{2i}\left(\frac{z+i}{iz+1}-\frac{\overline{z}-i}{-i\overline{z}+1}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)\\

&=&\frac{1}{2i}\left(\frac{(z+i)(-i\overline{z}+1)-(iz+1)(\overline{z}-i)}{|iz+1|^2}\right)

\end{eqnarray}

[math]\displaystyle \begin{align*} z &= x + i\,y \textrm{ where } x, y \in \mathbf{R} \\ \\ f(z) &= \frac{z + i}{i\,z + 1} \\ &= \frac{x + i\,y + i}{i\left( x + i\,y \right) + 1} \\ &= \frac{x + i \left( 1 + y \right) }{ 1 - y + i\,x } \\ &= \frac{\left[ x + i \left( 1 + y \right) \right] \left( 1 - y - i\,x \right) }{ \left( 1 - y + i\,x \right) \left( 1 - y - i\,x \right) } \\ &= \frac{ x \left( 1 - y \right) - i\, x^2 + i \left( 1 + y \right) \left( 1 - y \right) + x \left( 1 + y \right) }{ \left( 1 - y \right) ^2 + x^2 } \\ &= \frac{2x + i \left( 1 - x^2 - y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \\ &= \frac{2x}{ x^2 + \left( 1 - y \right)^2 } + i \left[ \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right)^2 } \right] \end{align*}[/math]

So therefore

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{1 - \left( x^2 + y^2 \right) }{ x^2 + \left( 1 - y \right) ^2 } \end{align*}[/math]

And since [math]\displaystyle \begin{align*} \left| z \right|^2 = x^2 + y^2 \end{align*}[/math] and [math]\displaystyle \begin{align*} \left| z - i \right| ^2 = x^2 + \left( y - 1 \right) ^2 = x^2 + \left( 1 - y \right) ^2 \end{align*}[/math] that means

[math]\displaystyle \begin{align*} \mathcal{I} \left[ f(z) \right] &= \frac{ 1 - \left| z \right| ^2 }{ \left| z - i \right| ^2 } \end{align*}[/math]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
767
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K