MHB What is the integral of $\frac{x}{2\sqrt{x+2}}$?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The integral of $\frac{x}{2\sqrt{x+2}}$ is computed using integration by parts. The process involves rewriting the integral and applying the substitution method with $u=\frac{x}{2}$ and $dv=\frac{1}{\sqrt{x+2}} \, dx$. After performing the integration, the result simplifies to $I=\frac{(x-4)\sqrt{x+3}}{3}$. The discussion emphasizes the importance of completing the last integral and factoring the result. Ultimately, the correct integral is confirmed and simplified.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {r9} IBP}$
$I=\int \frac{x}{2\sqrt{x+2}}\,dx
=\frac{\left(x-4\right)\sqrt{x+3}}{3}$
Rewrite as
$I=\int \frac{x}{2}\frac{1}{\sqrt{x+2}}\, dx $
Let
$\displaystyle
u=\frac{x}{2} \ \ \ dv=\frac{1}{\sqrt{x+2}} \, dx \\
du=\frac{1}{2} \ \ \ v=2\sqrt{x+2} \\ $
Then
$x\sqrt{x+2}-\int \sqrt{x+2} \ dx$
This doesn't look it's heading toward the answer😞

$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
You're doing fine...complete the last integral (with a constant of integration), then factor. :)
 
$\tiny\text{LCC 206 {r9} IBP}$
$$\displaystyle
I=\int \frac{x}{2\sqrt{x+2}}\,dx
=\frac{\left(x-4\right)\sqrt{x+3}}{3} \\
\text{rewrite as} \\
I=\int \frac{x}{2}\frac{1}{\sqrt{x+2}}\, dx \\
u=\frac{x}{2} \ \ \ dv=\frac{1}{\sqrt{x+2}} \, dx \\
du=\frac{1}{2} \ \ \ v=2\sqrt{x+2} \\
\text{then} \\
I=x\sqrt{x+2}-\int \sqrt{x+2} \ dx \\
= x\sqrt{x+2}-\frac{2}{3}\left(x+2\right) \\
\text{factor } \\
=\sqrt{x+2}\left[x-\frac{2\left(x+2\right)}{3}\right] \\
\text{simplify} \\
I=\frac{\left(x-4\right)\sqrt{x+3}}{3}$$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄
 
Last edited:

Similar threads

Replies
3
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
6
Views
2K
Replies
3
Views
1K