What is the integral of $\frac{x}{2\sqrt{x+2}}$?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The integral of the function $\frac{x}{2\sqrt{x+2}}$ is calculated using integration by parts (IBP), resulting in the expression $I=\frac{(x-4)\sqrt{x+3}}{3}$. The process involves rewriting the integral, applying the substitution $u=\frac{x}{2}$ and $dv=\frac{1}{\sqrt{x+2}} \, dx$, leading to the evaluation of the integral $I=x\sqrt{x+2}-\int \sqrt{x+2} \, dx$. The final simplification yields the solution, confirming the accuracy of the integration method used.

PREREQUISITES
  • Integration by Parts (IBP)
  • Basic substitution techniques in calculus
  • Understanding of square root functions
  • Familiarity with simplifying algebraic expressions
NEXT STEPS
  • Study advanced integration techniques, including trigonometric substitution
  • Learn more about the properties of square root functions in calculus
  • Practice additional problems involving integration by parts
  • Explore the application of integrals in real-world scenarios
USEFUL FOR

Students of calculus, mathematics educators, and anyone looking to enhance their skills in solving integrals using integration by parts.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {r9} IBP}$
$I=\int \frac{x}{2\sqrt{x+2}}\,dx
=\frac{\left(x-4\right)\sqrt{x+3}}{3}$
Rewrite as
$I=\int \frac{x}{2}\frac{1}{\sqrt{x+2}}\, dx $
Let
$\displaystyle
u=\frac{x}{2} \ \ \ dv=\frac{1}{\sqrt{x+2}} \, dx \\
du=\frac{1}{2} \ \ \ v=2\sqrt{x+2} \\ $
Then
$x\sqrt{x+2}-\int \sqrt{x+2} \ dx$
This doesn't look it's heading toward the answer😞

$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
You're doing fine...complete the last integral (with a constant of integration), then factor. :)
 
$\tiny\text{LCC 206 {r9} IBP}$
$$\displaystyle
I=\int \frac{x}{2\sqrt{x+2}}\,dx
=\frac{\left(x-4\right)\sqrt{x+3}}{3} \\
\text{rewrite as} \\
I=\int \frac{x}{2}\frac{1}{\sqrt{x+2}}\, dx \\
u=\frac{x}{2} \ \ \ dv=\frac{1}{\sqrt{x+2}} \, dx \\
du=\frac{1}{2} \ \ \ v=2\sqrt{x+2} \\
\text{then} \\
I=x\sqrt{x+2}-\int \sqrt{x+2} \ dx \\
= x\sqrt{x+2}-\frac{2}{3}\left(x+2\right) \\
\text{factor } \\
=\sqrt{x+2}\left[x-\frac{2\left(x+2\right)}{3}\right] \\
\text{simplify} \\
I=\frac{\left(x-4\right)\sqrt{x+3}}{3}$$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K