MHB What is the integral of sin^3(t)cos^4(t) using u-substitution?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
The integral of sin^3(t)cos^4(t) can be solved using u-substitution by letting u = cos(t), which simplifies the integral to -∫(u^4 - u^6) du. After integrating, the result is expressed as -[u^5/5 - u^7/7] + C, which is back-substituted to yield (cos^7(t)/7) - (cos^5(t)/5) + C. To verify the solution without a calculator, differentiation of the result is suggested. The discussion also raises questions about whether the integral was derived from a trigonometric substitution.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Whit 8.7.23} trig u subs s87.3 nmh{1000}
$\displaystyle
I=\displaystyle\int {\sin^3\left({t}\right) \cos^4\left({t}\right)} \ d{t}
=\int\ (1-\cos^2\left({t}\right)) \cos^4\left({t}\right) \sin\left({t}\right) \ dt \\
\begin{align}\displaystyle
u& = \cos\left({t}\right)&
du&=-\sin\left({t}\right) \ d{t} \\
\end{align}\\

I=-\displaystyle\int\left(1-u^2\right)u^4 \ du = - \displaystyle\int\left(u^4-u^6\right) \ du \\
\text{integrate }\\
I =-\left[ { \dfrac{u^5}{5}}
-\dfrac{u^7}{7}\right] + C \\
\text{back substitute }\\
I = { \dfrac{\cos^7{t} }{7}}
-\dfrac{\cos^5\left({t}\right)}{5} + C$
Hopefully😰
 
Last edited:
Physics news on Phys.org
That's it. Good work!
 
Much Mahalo

MHB has done a lot to help me prepare for the MAT 206 class coming up in August👓

Just curious how can an answer be checked without using a calculator which you can't do during a test.
 
Differentiate the result.
 
Was this the entire question? Or was it an integral resulting from having done a trigonometric substitution?
 
Both 🐮
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K