MHB What is the integral of the Arcus function?

  • Thread starter Thread starter Theia
  • Start date Start date
  • Tags Tags
    Function Integral
Theia
Messages
121
Reaction score
1
The exact value of $$\int_{-1}^1 \arcsin (x) \arccos (x) \arctan(x) \mathrm{d} x.$$
 
Mathematics news on Phys.org
Suggested solution

We have
$$ I = \int_{-1} ^{1} \arcsin (x) \arccos (x) \arctan (x) \mathrm{d}x. $$

This procedure is fairly long, so I'll put some subsections to keep you on track.

Getting rid of arccos(x)

To start, one can separate positive and negative intervals and substitute \( x = -t \) to the negative interval part. We obtain

$$\begin{align*}I &= \int_{-1} ^{0} \arcsin (x) \arccos (x) \arctan (x) \mathrm{d}x + \int_{0} ^{1} \arcsin (x) \arccos (x) \arctan (x) \mathrm{d}x \\ &= -\int_{1} ^0 \arcsin (-t) \arccos (-t) \arctan (-t) \mathrm{d}t + \int_{0} ^{1} \arcsin (t) \arccos (t) \arctan (t) \mathrm{d}t \\ &= \int_{0} ^{1} \left( \arcsin (x) \left(\pi - \arccos (x) \right) \arctan (x) + \arcsin (x) \arccos (x) \arctan (x) \right) \mathrm{d}x \\ &= \pi \int_{0} ^{1} \arcsin (x) \arctan (x) \mathrm{d}x. \end{align*}$$

Getting rid of arcsin(x) and arctan(x)

Since it's easier to integrate \(\sin\) than \(\arcsin\), we'll next do integration by parts followed by a substitution. Let's choose \(f = \arctan (x)\) and \(g' = \arcsin (x)\) and write

$$\begin{align*}I &= \pi \Bigg/_{\hspace{-3mm}0}^{\,1} \arctan (x) \left( x\arcsin (x) + \sqrt{1 - x^{2}} \right) - \pi \int_{0}^{1} \frac{x\arcsin (x) + \sqrt{1 - x^{2}}}{1+x^{2}} \mathrm{d}x \\ &= \pi \cdot \frac{\pi}{4} \cdot \frac{\pi}{2} - \pi \int_{0}^{1} \frac{x\arcsin (x) + \sqrt{1 - x^{2}}}{1+x^{2}} \mathrm{d}x . \end{align*}$$

Now, let's substitute \(x = \sin (t) .\)

$$\begin{align*} I &= \frac{\pi ^3}{8} - \pi \int_0 ^{\pi/2} \frac{t\sin (t) + \cos (t)}{1 + \sin ^2 (t)} \ \cos (t)\mathrm{d}t \\ &= \frac{\pi ^3}{8} - \pi \ II - \pi \ III, \end{align*}$$

with obvious definitions for \(II\) and \(III\):

$$\begin{align*}II &= \int_0 ^{\pi/2} \frac{t \sin (t) \cos (t)}{1 + \sin ^2 (t)} \ \mathrm{d}t \\ III &= \int_0 ^{\pi/2} \frac{\cos ^2 (t)}{1 + \sin ^2 (t)} \ \mathrm{d}t. \end{align*}$$

The integral \(III\) seems somewhat easy, so at this point our interest points to the integral \(II.\)

Integration of the integral II

Again we integrate by parts with choices \(f = t\) and \(g' = \frac{\sin (t) \cos (t)}{1 + \sin ^2 (t)}.\) Hence we obtain

$$\begin{align*}II &= \Bigg/_{\hspace{-3mm}0}^{\,\pi/2} \frac{t \ln \left( 1 + \sin ^2 (t) \right)}{2} - \frac{1}{2} \int_0 ^{\pi/2} \ln \left( 1 + \sin ^2 (t)\right)\mathrm{d}t \\ &= \frac{\pi \ln 2}{4} - \frac{1}{2} II_2, \end{align*}$$

where

$$II_2 = \int _{0} ^{\pi/2} \ln \left( 1 + \sin ^2 (t) \right) \mathrm{d}t.$$

This we can evaluate using differentiation under the integral sign. Let's define

$$F(a) = \int_{0} ^{\pi/2} \ln \left( 1 + a\sin ^2 (t) \right) \mathrm{d}t,$$

so that \(II_{2} = F(1).\) Next we differentiate \(F(a)\) with respect to \(a\) to obtain

$$\frac{\mathrm{d}F}{\mathrm{d}a} = \int _{0} ^{\pi/2} \frac{\sin ^2 (t)}{1 + a\sin ^2 (t)} \mathrm{d}t.$$

Now there are many ways to integrate this. One is to divide nominator and denominator by \(\sin ^2 (t)\) and substitute \(z = \cot (t).\) I'm not sure if this way offers any advantages over the use of direct Weierstrass substitution. Anyhow, I used it and obtained

$$\begin{align*}\frac{\mathrm{d}F}{\mathrm{d}a} &= \int _{0} ^{1} \frac{\left( \frac{2u}{1 + u^{2}} \right) ^{2}}{1 + a\left( \frac{2u}{1 + u^2} \right) ^2} \cdot \frac{2u\mathrm{d}u}{1 + u^2} \\ &= 8\int_{0} ^{1} \frac{u^2\mathrm{d}u}{(1 + u^2)(u^4 + 2bu^2 + 1)}, \end{align*}$$

where \(b = 1 + 2a.\) This is easy to integrate using partial fractions. A shorthand \(c = \sqrt{b^2 - 1}\) will be used in following.

$$\begin{align*}\frac{\mathrm{d}F}{\mathrm{d}a} &= \frac{2}{c(b-1)} \int_{0} ^{1} \left(\frac{2c}{u^2+1} + \frac{1-b-c}{u^2+b+c} + \frac{b-c-1}{u^2+b-c} \right)\mathrm{d}u \\ &= \frac{2}{c(b-1)} \left( \frac{\pi c}{2} + \frac{1-b-c}{\sqrt{b+c}} \arctan \left( \frac{1}{\sqrt{b+c}} \right) + \frac{b-c-1}{\sqrt{b-c}} \arctan \left( \frac{1}{\sqrt{b-c}} \right) \right) \\ &= \frac{\pi}{b-1} + \frac{2}{c(b-1)} \cdot \frac{1-b-c}{\sqrt{b+c}} \cdot \frac{\pi}{2} \\ &= \frac{\pi}{2a} \left( 1 - \frac{1}{\sqrt{a+1}} \right).\end{align*}$$

Hence we've obtained for the function \(F(a):\)

$$F(a) = \frac{\pi}{2} \int \left( \frac{1}{a} - \frac{1}{a\sqrt{a+1}}\right) \mathrm{d}a.$$

There are again many ways to integrate this. I did it this way:

$$\begin{align*}F(a) &= \frac{\pi \ln a}{2} - \frac{\pi}{2} \int \frac{\mathrm{d}a}{a\sqrt{a+1}} \\ &= \frac{\pi \ln a}{2} - \frac{\pi}{2} \int \left( \frac{\sqrt{a+1}}{a} - \frac{1}{\sqrt{a+1}} \right) \mathrm{d}a \\ &= \frac{\pi \ln a}{2} + \frac{\pi}{2} \ln \left( \frac{\sqrt{a+1} + 1}{\sqrt{a+1} - 1} \right) + C \\ &= \frac{\pi}{2} \ln \left( \frac{a(\sqrt{a+1} + 1)}{\sqrt{a+1} - 1} \right) + C.\end{align*}$$

To find out the value of the constant of integration, we calculate the function at point \(a = 0\) according to our definition

$$F(0) = \int_{0} ^{\pi/2} \ln (1) \mathrm{d}a = 0$$

and using the general result we derived

$$\begin{align*}F(0) &= \lim_{a\to 0+} \frac{\pi}{2} \ln \left( \frac{a(\sqrt{a+1} + 1)}{\sqrt{a+1} - 1} \right) + C \\ &= \frac{\pi}{2} \lim_{a \to 0+} \ln \left( \frac{a(1 + \frac{a}{2} - \frac{a^2}{8} + \cdots + 1)}{1 + \frac{a}{2} - \frac{a^2}{8}} + \cdots - 1 \right) + C \\ &= \frac{\pi}{2} \lim_{a\to 0+} \ln \left( \frac{2 + \frac{a}{2} + \cdots}{\frac{1}{2} - \frac{a}{8} + \cdots} \right) + C \\ &= \pi \ln 2 + C.\end{align*}$$

Since the value of the function must be the same, no matter which way is being used, we obtain \(C = -\pi \ln 2.\) Hence finally

$$F(a) = \frac{\pi}{2} \ln \left( \frac{a(\sqrt{a+1} + 1)}{\sqrt{a+1} - 1} \right) - \pi \ln 2,$$

and

$$\begin{align*}\int_{0} ^{\pi/2} \ln \left( 1 + \sin ^{2} (t) \right) \mathrm{d}t &= F(a) \\ &= \frac{\pi}{2} \ln \left( \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right) - \pi \ln 2 \\ &= \pi \ln \left( \frac{\sqrt{2} + 1}{2} \right).\end{align*}$$

Yey! So we've left only the integral \(III.\)

Integration of integral III

Here we first use the double angle formulas to get rid of squares. After it, we substitute \(2t = u\) and apply Weierstrass substitution. In other words

$$\begin{align*}III &= \int_0 ^{\pi/2} \frac{\cos ^2 (t)}{1 + \sin ^2 (t)} \mathrm{d}t \\ &= \int_{0} ^{\pi/2} \frac{1 + \cos (2t)}{3 - \cos (2t)} \mathrm{d}t \\ &= \frac{1}{2} \int_{0} ^{\pi} \frac{1 + \cos (u)}{3 - \cos (u)} \mathrm{d}u \\ &= \frac{1}{2} \int_{0} ^{\infty} \frac{1 + \frac{1 - p^2}{1 + p^2}}{3 - \frac{1 - p^2}{1 + p^2}} \ \frac{2\mathrm{d}p}{1 + p^2} \\ &= \int_{0} ^{\infty} \frac{\mathrm{d}p}{(1 + p^2)(1 + 2p^2)} \\ &= \cdots \\ &= \frac{\pi (\sqrt{2} - 1)}{2}.\end{align*}$$

Final result

$$\begin{align*}I &= \frac{\pi ^3}{8} - \pi \ II - \pi \ III \\ &= \frac{\pi ^3}{8} - \pi \left(\frac{\pi \ln 2}{4} - \frac{1}{2} \pi \ln \left( \frac{\sqrt{2} + 1}{2} \right) \right) - \pi \cdot \frac{\pi (\sqrt{2} - 1)}{2} \\ &= \frac{\pi ^3}{8} - \frac{\pi ^2}{4} \ln \left( \frac{8}{3 + 2\sqrt{2}} \right) - \frac{\pi ^2 (\sqrt{2} - 1)}{2} \\ &\approx 1.05031\ldots\end{align*}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top