What is the integrating factor for solving this IVP?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
Click For Summary
SUMMARY

The integrating factor for the initial value problem (IVP) defined by the equation $ty' + 2y = t^2 - t + 1$ with the condition $y(1) = \frac{1}{2}$ is determined to be $\mu(t) = e^{2t}$. The solution involves transforming the equation into a standard form and applying the integrating factor to solve for $y$. The general solution includes a homogeneous part $y = Ce^{-2t}$ and a particular solution of the form $y = \frac{1}{2}t^2$. The final solution is $y = Ce^{-2t} + \frac{1}{2}t^2$.

PREREQUISITES
  • Understanding of first-order linear differential equations
  • Familiarity with integrating factors in differential equations
  • Knowledge of exponential functions and logarithms
  • Ability to perform integration and solve for constants in equations
NEXT STEPS
  • Study the method of integrating factors for linear differential equations
  • Learn about homogeneous and particular solutions in differential equations
  • Explore the application of exponential functions in solving differential equations
  • Practice solving initial value problems (IVPs) with varying conditions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on differential equations, as well as educators teaching calculus and differential equations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
find the solution of the IVP
$ty'+2y=t^2-t+1, \quad y(1)=\dfrac{1}{2}, \quad t>0$\begin{array}{lll}
\textsf{Divide thru by t} & y'+\dfrac{2}{t}y=t-1+\dfrac{1}{t}\\
\textsf{Find u(t)} &u(t)=\exp\displaystyle\int \dfrac{2}{t} \, dx =e^{2ln |t|}+c
\end{array}

so far anyway...
is there some symbol for integrating factor the book seems to use u(t)
 
Last edited:
Physics news on Phys.org
Greek letter mu, $\mu$, is what I recall.

for #15, $\mu = t^2$
 
skeeter said:
Greek letter mu, $\mu$, is what I recall.

for #15, $\mu = t^2$
got it...
 
You have a rather silly algebra mistake in the first step.
$y'+ 2y= te^{-2t}$
Dividing by t gives $\frac{y'+ 2y}{t}= \frac{y'}{t}+ \frac{2y}{t}= e^{-2t}$
not $y'+ \frac{2y}{t}= e^{-2t}$.

Personally, I wouldn't do that. As I said in my response to a previous question, an "integrating factor" is a function, $\mu(t)$, such that $(\mu(t)y)'= \mu(t)y'+ 2\mu(t)y$. Since $(\mu(t)y)'= \mu(t)y'+ \mu'(t)y= \mu(t)y'+ 2\mu(t)y$ so that we must have $\mu'= 2\mu$ so $\mu(t)= e^{2t}$. Multiplying this equation by $e^{2t}$ we get $e^{2t}y'+ 2e^{2t}y= (e^{2t}y)'= t$. Integrating both sides, $e^{2t}y= \frac{1}{2}t^2+ C$ so $y= Ce^{-2t}+ \frac{1}{2}t^2$.

This happens to be a linear differential equation so we can do the "associated homogeneous equation", $y'+ 2y=0$, then the entire equation. The general solution to that homogeneous equation is, of course, $y= Ce^{-2t}$. For the entire equation, with right side, $te^{-2t}, we might try a "particular solution" of the form $Ate^{-2t}$ but since $e^{-2t}$ is already a solution to the homogeneous equation we try, instead, $At^2e^{-2t}$. With $y= At^2e^{-2t}$, $y'= 2Ate^{-2t}- 2Ae^{2t}$ so $y'+ 2y= 2Ate^{-2t}- 2Ae^{-2t}+ 2ate^{-2t}= 2Ate^{-2t}= te^{-2t}$ so $A= \frac{1}{2}$.
 
that is #14
 
karush said:
View attachment 11295
image to avoid typos... doing #15

\begin{array}{lll}
\textsf{Divide thru by t} & y'+\dfrac{2}{t}y=t-1+\dfrac{1}{t}\\
\textsf{Find u(t)} &u(t)=\exp\displaystyle\int \dfrac{2}{t} \, dx =e^{2ln |t|}+c
\end{array}

so far anyway...
is there some symbol for integrating factor the book seems to use u(t)

It's actually $\displaystyle \begin{align*} \textrm{exp}\left( 2\ln{ \left| t \right| } + C \right) \end{align*}$. Any constant will be fine, so C = 0 is the easiest. It also simplifies to $\displaystyle \begin{align*} \textrm{exp}\left( 2\ln{ \left| t \right| } \right) &= \textrm{exp} \left[ \ln{ \left( \left| t \right| ^2 \right) } \right] = t^2 \end{align*}$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K