MHB What is the integrating factor for solving this IVP?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
Click For Summary
The discussion focuses on solving the initial value problem (IVP) given by the equation ty' + 2y = t^2 - t + 1 with the condition y(1) = 1/2. Participants clarify the integrating factor, with one suggesting it is represented by the Greek letter mu (μ), while another corrects an algebra mistake in the initial steps. The correct integrating factor is derived as μ(t) = e^(2t), leading to the general solution y = Ce^(-2t) + (1/2)t^2. The conversation emphasizes the importance of correctly identifying the integrating factor and applying it to solve the differential equation accurately.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
find the solution of the IVP
$ty'+2y=t^2-t+1, \quad y(1)=\dfrac{1}{2}, \quad t>0$\begin{array}{lll}
\textsf{Divide thru by t} & y'+\dfrac{2}{t}y=t-1+\dfrac{1}{t}\\
\textsf{Find u(t)} &u(t)=\exp\displaystyle\int \dfrac{2}{t} \, dx =e^{2ln |t|}+c
\end{array}

so far anyway...
is there some symbol for integrating factor the book seems to use u(t)
 
Last edited:
Physics news on Phys.org
Greek letter mu, $\mu$, is what I recall.

for #15, $\mu = t^2$
 
skeeter said:
Greek letter mu, $\mu$, is what I recall.

for #15, $\mu = t^2$
got it...
 
You have a rather silly algebra mistake in the first step.
$y'+ 2y= te^{-2t}$
Dividing by t gives $\frac{y'+ 2y}{t}= \frac{y'}{t}+ \frac{2y}{t}= e^{-2t}$
not $y'+ \frac{2y}{t}= e^{-2t}$.

Personally, I wouldn't do that. As I said in my response to a previous question, an "integrating factor" is a function, $\mu(t)$, such that $(\mu(t)y)'= \mu(t)y'+ 2\mu(t)y$. Since $(\mu(t)y)'= \mu(t)y'+ \mu'(t)y= \mu(t)y'+ 2\mu(t)y$ so that we must have $\mu'= 2\mu$ so $\mu(t)= e^{2t}$. Multiplying this equation by $e^{2t}$ we get $e^{2t}y'+ 2e^{2t}y= (e^{2t}y)'= t$. Integrating both sides, $e^{2t}y= \frac{1}{2}t^2+ C$ so $y= Ce^{-2t}+ \frac{1}{2}t^2$.

This happens to be a linear differential equation so we can do the "associated homogeneous equation", $y'+ 2y=0$, then the entire equation. The general solution to that homogeneous equation is, of course, $y= Ce^{-2t}$. For the entire equation, with right side, $te^{-2t}, we might try a "particular solution" of the form $Ate^{-2t}$ but since $e^{-2t}$ is already a solution to the homogeneous equation we try, instead, $At^2e^{-2t}$. With $y= At^2e^{-2t}$, $y'= 2Ate^{-2t}- 2Ae^{2t}$ so $y'+ 2y= 2Ate^{-2t}- 2Ae^{-2t}+ 2ate^{-2t}= 2Ate^{-2t}= te^{-2t}$ so $A= \frac{1}{2}$.
 
that is #14
 
karush said:
View attachment 11295
image to avoid typos... doing #15

\begin{array}{lll}
\textsf{Divide thru by t} & y'+\dfrac{2}{t}y=t-1+\dfrac{1}{t}\\
\textsf{Find u(t)} &u(t)=\exp\displaystyle\int \dfrac{2}{t} \, dx =e^{2ln |t|}+c
\end{array}

so far anyway...
is there some symbol for integrating factor the book seems to use u(t)

It's actually $\displaystyle \begin{align*} \textrm{exp}\left( 2\ln{ \left| t \right| } + C \right) \end{align*}$. Any constant will be fine, so C = 0 is the easiest. It also simplifies to $\displaystyle \begin{align*} \textrm{exp}\left( 2\ln{ \left| t \right| } \right) &= \textrm{exp} \left[ \ln{ \left( \left| t \right| ^2 \right) } \right] = t^2 \end{align*}$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K