MHB What is the Inverse Laplace Transform of 2s+7-e^-2s/(s+1)^2?

Click For Summary
The discussion centers on finding the inverse Laplace transform of the expression (2s + 7 - e^-2s) / (s + 1)^2. Participants break down the numerator and apply relevant Laplace transform formulas, particularly focusing on the term involving e^-2s. The conversation also touches on a modified question regarding the inverse Laplace transform of (2s + 5 - e^-2s) / (s^2 + s + 1). Key techniques include manipulating the expression and using known transforms to simplify the problem. Overall, the thread provides insights into solving inverse Laplace transforms with exponential components.
alexmahone
Messages
303
Reaction score
0
Find the inverse Laplace transform of $\displaystyle \frac{2s+7-e^{-2s}}{(s+1)^2}$.
 
Last edited:
Physics news on Phys.org
Alexmahone said:
Find the inverse Laplace transform of $\displaystyle\frac{2s+5-e^{-2s}}{s^2+s+1}$.

$s^2 + s + 1/4 + 1 - 1/4 = (s + 1/2)^2 + 3/4$

Then break up the numerator.
 
dwsmith said:
$s^2 + s + 1/4 + 1 - 1/4 = (s + 1/2)^2 + 3/4$

Then break up the numerator.

I changed the question. (Sorry about that.)
 
Alexmahone said:
I changed the question. (Sorry about that.)

Then look at

$$
\frac{2s+7}{(s+1)^2} - \frac{e^{-2s}}{(s+1)^2}
$$

The formula for the second piece is

$$
\frac{(t-\tau)^n}{n!}e^{-\alpha(t-\tau)}u(t-\tau) = \mathfrak{L}^{-1}\left[\frac{e^{-\tau s}}{(s+\alpha)^{n+1}}\right]
$$

The other one shouldn't be too bad. Just ask if you need help with that one.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K