MHB What Is the Least Positive Integer x Satisfying These Congruences?

Click For Summary
The discussion focuses on finding the least positive integer x that satisfies the congruences x=5 (mod 7), x=7 (mod 11), and x=3 (mod 13). Participants outline methods using the Chinese Remainder Theorem and modular arithmetic to derive the solution. Key steps include expressing x in terms of k and j, solving simultaneous congruences, and verifying the final result. The least positive integer found through calculations is 887, which meets all specified conditions. The problem is noted for its historical significance in illustrating ancient Chinese military strategies.
Suvadip
Messages
68
Reaction score
0
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?
 
Mathematics news on Phys.org
suvadip said:
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?

$ x = 5 (mod 7) $
$ x = 7k +5 $ for some k
Sub in the second
$7k+5 = 7 (mod 11) $
$7k = 2 (mod 11) $ the multiplication inverse of 7 in $\mathbb{Z}_{11}$
$7(3) = -1 (mod 11) \Rightarrow 7(7)(9) = 1 (mod 11) \Rightarrow 7(8) = 1 (mod 11)$ so

$8(7k) = 16 (mod 11) \Rightarrow k = 5 (mod 11)$
$ k = 11t + 5 $
So $ x = 7(11t+5) + 5 = 77t + 40...(*) $
Now the last equation
$ 77t + 40 = 3 (mod 13)$ , solve it for t it will be something like t = 13m + c sub it in (*)
Chinese remainder theorem - Wikipedia, the free encyclopedia
 
suvadip said:
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?

If $x \equiv a ~ (n)$ and $x\equiv b ~ (m)$ where $n,m$ are relatively prime positive integers then $x\equiv ab ~ (nm)$.

Since $x\equiv 5 ~ (7)$ it means $x\equiv 5 + 7k ~ (7)$.
Since $x\equiv 7 ~ (11)$ it means $x\equiv 7 + 11j ~ (11)$.

Now find integers $k,j$ so that $5 + 7k = 7 + 11j$. We require $11j - 7k = -2$. For example, choose $j=-4$ and $k=-6$. This tells us that $x\equiv -37 ~ (7)$ and $x\equiv -37 ~ (11)$, now since $7,11$ are relatively prime we get $x\equiv -37~ (77)$.

Continue from here.
 
Equivalently: if x=5 (mod 7), x=7 (mod 11) and x=3(mod 13),
then from x= 3 (mod 13) (it is not necessary to start with the largest "modulus" but it makes the calculations easier) x= 3+ 13i for some integer I.

Then x= 3+ 13i= 7 (mod 11) so 3+ 2i= 7 (mod 11), 2i= 4 (mod 11), i= 2 (mod 11).
That means that i= 2+ 11j for some integer j so x= 3+ 13i= 3+ 13(2+ 11j)= 29+ 143j.

Then x= 29+ 143j= 5 (mod 7) so 1+ 3j= 5 (mod 7), 3j= 4 (mod 7). 3(6)= 18= 14+ 4. That means that j= 6+ 7k for some integer k and x= 29+ 143j= 29+ 143(6+ 7k)= 887+ 1001k.

Check: 887/7= 126 with remainder 5. 887/11= 80 with remainder 7. 887/13= 68 with remainder 3.
 
suvadip said:
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?

This problem is of historical importance because it illustrates the method used by the chinese generals in the Middle Age to know the number of soldiers in a battalion. The general solution of this problem is illustrated in... http://mathhelpboards.com/number-theory-27/applications-diophantine-equations-6029.html#post28283

Kind regards

$\chi$ $\sigma$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
940
  • · Replies 2 ·
Replies
2
Views
2K