MHB What Is the Least Positive Integer x Satisfying These Congruences?

Suvadip
Messages
68
Reaction score
0
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?
 
Mathematics news on Phys.org
suvadip said:
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?

$ x = 5 (mod 7) $
$ x = 7k +5 $ for some k
Sub in the second
$7k+5 = 7 (mod 11) $
$7k = 2 (mod 11) $ the multiplication inverse of 7 in $\mathbb{Z}_{11}$
$7(3) = -1 (mod 11) \Rightarrow 7(7)(9) = 1 (mod 11) \Rightarrow 7(8) = 1 (mod 11)$ so

$8(7k) = 16 (mod 11) \Rightarrow k = 5 (mod 11)$
$ k = 11t + 5 $
So $ x = 7(11t+5) + 5 = 77t + 40...(*) $
Now the last equation
$ 77t + 40 = 3 (mod 13)$ , solve it for t it will be something like t = 13m + c sub it in (*)
Chinese remainder theorem - Wikipedia, the free encyclopedia
 
suvadip said:
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?

If $x \equiv a ~ (n)$ and $x\equiv b ~ (m)$ where $n,m$ are relatively prime positive integers then $x\equiv ab ~ (nm)$.

Since $x\equiv 5 ~ (7)$ it means $x\equiv 5 + 7k ~ (7)$.
Since $x\equiv 7 ~ (11)$ it means $x\equiv 7 + 11j ~ (11)$.

Now find integers $k,j$ so that $5 + 7k = 7 + 11j$. We require $11j - 7k = -2$. For example, choose $j=-4$ and $k=-6$. This tells us that $x\equiv -37 ~ (7)$ and $x\equiv -37 ~ (11)$, now since $7,11$ are relatively prime we get $x\equiv -37~ (77)$.

Continue from here.
 
Equivalently: if x=5 (mod 7), x=7 (mod 11) and x=3(mod 13),
then from x= 3 (mod 13) (it is not necessary to start with the largest "modulus" but it makes the calculations easier) x= 3+ 13i for some integer I.

Then x= 3+ 13i= 7 (mod 11) so 3+ 2i= 7 (mod 11), 2i= 4 (mod 11), i= 2 (mod 11).
That means that i= 2+ 11j for some integer j so x= 3+ 13i= 3+ 13(2+ 11j)= 29+ 143j.

Then x= 29+ 143j= 5 (mod 7) so 1+ 3j= 5 (mod 7), 3j= 4 (mod 7). 3(6)= 18= 14+ 4. That means that j= 6+ 7k for some integer k and x= 29+ 143j= 29+ 143(6+ 7k)= 887+ 1001k.

Check: 887/7= 126 with remainder 5. 887/11= 80 with remainder 7. 887/13= 68 with remainder 3.
 
suvadip said:
Find the least positive integer x such that x=5 (mod 7), x=7 (mod 11) and x=3(mod 13).

How to proceed?

This problem is of historical importance because it illustrates the method used by the chinese generals in the Middle Age to know the number of soldiers in a battalion. The general solution of this problem is illustrated in... http://mathhelpboards.com/number-theory-27/applications-diophantine-equations-6029.html#post28283

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top