What is the Limit of a Rational Expression?

Click For Summary
SUMMARY

The limit of the rational expression $$\lim_{{x}\to{\infty}}\frac{\sqrt{3x^2 - 1 }}{x-1}$$ is definitively calculated as $$\sqrt{3}$$. The discussion emphasizes the importance of dividing by ${x}^{2}$ to simplify the expression, leading to the conclusion that as $$x$$ approaches infinity, the limit converges to $$\sqrt{3}$$. Participants shared various methods to arrive at this result, reinforcing the utility of manipulating expressions involving square roots and rational functions.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with rational expressions
  • Knowledge of square root properties
  • Ability to manipulate algebraic fractions
NEXT STEPS
  • Study the concept of limits involving infinity in calculus
  • Learn techniques for simplifying rational expressions
  • Explore the use of L'Hôpital's Rule for indeterminate forms
  • Investigate the behavior of functions as they approach asymptotes
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in mastering limits and rational expressions will benefit from this discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\lim_{{x}\to{\infty}}\frac{\sqrt{3x^2 - 1 }}{x-1}=\sqrt{3}$$

I tried dividing everything by ${x}^{2}$ but not
 
Physics news on Phys.org
karush said:
$$\lim_{{x}\to{\infty}}\frac{\sqrt{3x^2 - 1 }}{x-1}=\sqrt{3}$$

I tried dividing everything by ${x}^{2}$ but not

$$\lim_{x \to +\infty} \frac{\sqrt{3x^2-1}}{x-1}= \lim_{x \to +\infty} \frac{3x^2-1}{(x-1) \sqrt{3x^2-1}}= \lim_{x \to +\infty} \frac{x^2 \left( 3- \frac{1}{x^2}\right)}{(x-1) \sqrt{x^2 \left( 3-\frac{1}{x^2}\right)}}= \lim_{x \to +\infty} \frac{x^2 \left( 3- \frac{1}{x^2}\right)}{(x-1)|x| \sqrt{ \left( 3-\frac{1}{x^2}\right)}}\\= \lim_{x \to +\infty} \frac{x^2 \left( 3- \frac{1}{x^2}\right)}{(x-1)x \sqrt{ \left( 3-\frac{1}{x^2}\right)}}= \lim_{x \to +\infty} \frac{x^2}{x^2 \left(1- \frac{1}{x} \right)} \cdot \lim_{x \to +\infty} \frac{3-\frac{1}{x^2}}{\sqrt{3-\frac{1}{x^2}}}= 1\cdot \frac{3}{\sqrt{3}}= \sqrt{3}$$
 
Wow, thanks, that was a lot of steps.
How would you know initially to go in that direction.
 
karush said:
Wow, thanks, that was a lot of steps.

(Smile)

karush said:
How would you know initially to go in that direction.
Usually when you have a square root you multiply by it at the numerator and the denominator.
 
Could you move this thread to the correct category?
 
karush said:
$$\lim_{{x}\to{\infty}}\frac{\sqrt{3x^2 - 1 }}{x-1}=\sqrt{3}$$

I tried dividing everything by ${x}^{2}$ but not

The easier way (first note that I'm leaving out absolute values because everything is positive when going to infinity anyway...)

$\displaystyle \begin{align*} \frac{\sqrt{3x^2 - 1}}{x - 1} &= \frac{\frac{1}{x}\,\sqrt{3x^2 - 1}}{\frac{1}{x} \left( x - 1 \right) } \\ &= \frac{\frac{1}{\sqrt{x^2}}\,\sqrt{3x^2 - 1}}{1 - \frac{1}{x}} \\ &= \frac{\sqrt{\frac{3x^2 - 1}{x^2}}}{1 - \frac{1}{x}} \\ &= \frac{\sqrt{3 - \frac{1}{x^2}}}{1 - \frac{1}{x}} \end{align*}$

So as $\displaystyle \begin{align*} x \to \infty , \, \frac{1}{x} \to 0 \end{align*}$ and $\displaystyle \begin{align*} \frac{1}{x^2} \to 0 \end{align*}$, giving $\displaystyle \begin{align*} \frac{\sqrt{3 - 0}}{1 - 0} = \sqrt{3} \end{align*}$ as the limit :)
 
I actually got to your 3rd step before posted, just didn't see the magic.

I sure learn a lot with MHB
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K