MHB What is the limit of $\lim_{n\rightarrow \infty }(2-2^{\frac{1}{n+1}})^{n}$?

  • Thread starter Thread starter Vali
  • Start date Start date
Click For Summary
The limit in question is evaluated as $\lim_{n\rightarrow \infty }(2-2^{\frac{1}{n+1}})^{n}$. The approach involves rewriting the limit in terms of the natural logarithm, leading to the indeterminate form 0/0. Applying L'Hôpital's rule results in $\ln(L) = -\ln(2)$, which simplifies to $L = \frac{1}{2}$. The discussion also raises the possibility of using the limit $\lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e$ to solve the problem. The final conclusion is that the limit evaluates to $\frac{1}{2}$.
Vali
Messages
48
Reaction score
0
$$\lim_{n\rightarrow \infty }(2-2^{\frac{1}{n+1}})^{n}$$
I wrote that $L=e^{\lim_{n\rightarrow \infty }(n)(1-2^{\frac{1}{n+1}})}$
how to continue ?
 
Physics news on Phys.org
What I would do is write:

$$L=\lim_{n\to\infty}\left(\left(2-2^{\frac{1}{n+1}}\right)^n\right)$$

And this implies:

$$\ln(L)=\lim_{n\to\infty}\left(\frac{\ln\left(2-2^{\frac{1}{n+1}}\right)}{\dfrac{1}{n}}\right)$$

Now you have the indeterminate form 0/0.
 
After I apply L'Hopital I get $ln(L)=-ln(2)$ so $L=\frac{1}{2}$
One question,Can this limit be solved by using this remarkable limit? $\lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e$
Thank you very much!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K