MHB What is the limit of the y-intercept as P approaches O on a given parabola?

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Parabola
soroban
Messages
191
Reaction score
0

We are given the parabola $y \,=\,ax^2$
. . It opens upward, is symmetric to the y-axis, with vertex at the origin $O$.

Select any point $P(p,ap^2)$ on the parabola.

Construct the perpendicular bisector of $OP$
. . and consider its $y$-intercept, $b.$

Code:
                  |
                 b|
     ◊            ♥            ◊
                  |\
                  | \             P
      ◊           |  \        ♠(p,ap^2)
                  |   \     *
       ◊          |    \  *  ◊
        ◊         |     *   ◊
          ◊       |   *   ◊
             ◊    | *  ◊
    - - - - - - - ◊ - - - - - -
                  |O

Find $\displaystyle\lim_{P\to O}b$

The answer is surprising.
Can anyone explain this phenomenon?
 
Mathematics news on Phys.org
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
(Hide the spoiler from the forum overview.)
The y-intercept is at twice the distance to the focal point.

This is similar to a lens.
If you have a point source at twice the focal distance of a lens, the light rays converge at the other side at twice the focal distance.

In this case we have a parabolic mirror.
When light rays start at twice the focal distance, they return to the same point.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top