MHB What is the limit of the y-intercept as P approaches O on a given parabola?

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Parabola
Click For Summary
The discussion centers on the limit of the y-intercept, denoted as b, of the perpendicular bisector of segment OP as point P approaches the origin O on the parabola y = ax^2. Participants explore the geometric properties of the parabola, noting its upward opening and symmetry about the y-axis. As P approaches O, the behavior of the y-intercept b becomes a focal point, leading to surprising results that challenge initial intuitions. The limit of b as P approaches O reveals unexpected mathematical behavior, prompting further inquiry into the underlying principles. Understanding this phenomenon requires a deeper analysis of the geometry and calculus involved in the scenario.
soroban
Messages
191
Reaction score
0

We are given the parabola $y \,=\,ax^2$
. . It opens upward, is symmetric to the y-axis, with vertex at the origin $O$.

Select any point $P(p,ap^2)$ on the parabola.

Construct the perpendicular bisector of $OP$
. . and consider its $y$-intercept, $b.$

Code:
                  |
                 b|
     ◊            ♥            ◊
                  |\
                  | \             P
      ◊           |  \        ♠(p,ap^2)
                  |   \     *
       ◊          |    \  *  ◊
        ◊         |     *   ◊
          ◊       |   *   ◊
             ◊    | *  ◊
    - - - - - - - ◊ - - - - - -
                  |O

Find $\displaystyle\lim_{P\to O}b$

The answer is surprising.
Can anyone explain this phenomenon?
 
Mathematics news on Phys.org
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
(Hide the spoiler from the forum overview.)
The y-intercept is at twice the distance to the focal point.

This is similar to a lens.
If you have a point source at twice the focal distance of a lens, the light rays converge at the other side at twice the focal distance.

In this case we have a parabolic mirror.
When light rays start at twice the focal distance, they return to the same point.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
13K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
37K
Replies
5
Views
2K