MHB What is the limit of the y-intercept as P approaches O on a given parabola?

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Parabola
AI Thread Summary
The discussion centers on the limit of the y-intercept, denoted as b, of the perpendicular bisector of segment OP as point P approaches the origin O on the parabola y = ax^2. Participants explore the geometric properties of the parabola, noting its upward opening and symmetry about the y-axis. As P approaches O, the behavior of the y-intercept b becomes a focal point, leading to surprising results that challenge initial intuitions. The limit of b as P approaches O reveals unexpected mathematical behavior, prompting further inquiry into the underlying principles. Understanding this phenomenon requires a deeper analysis of the geometry and calculus involved in the scenario.
soroban
Messages
191
Reaction score
0

We are given the parabola $y \,=\,ax^2$
. . It opens upward, is symmetric to the y-axis, with vertex at the origin $O$.

Select any point $P(p,ap^2)$ on the parabola.

Construct the perpendicular bisector of $OP$
. . and consider its $y$-intercept, $b.$

Code:
                  |
                 b|
     ◊            ♥            ◊
                  |\
                  | \             P
      ◊           |  \        ♠(p,ap^2)
                  |   \     *
       ◊          |    \  *  ◊
        ◊         |     *   ◊
          ◊       |   *   ◊
             ◊    | *  ◊
    - - - - - - - ◊ - - - - - -
                  |O

Find $\displaystyle\lim_{P\to O}b$

The answer is surprising.
Can anyone explain this phenomenon?
 
Mathematics news on Phys.org
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
(Hide the spoiler from the forum overview.)
The y-intercept is at twice the distance to the focal point.

This is similar to a lens.
If you have a point source at twice the focal distance of a lens, the light rays converge at the other side at twice the focal distance.

In this case we have a parabolic mirror.
When light rays start at twice the focal distance, they return to the same point.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top