I think, i got the ans for my own previous question. Can anyone pls verify it? All suggestions are always welcome.[math] \prod_{i=1}^{\infty}\left(1-\frac{1}{M^{i}}\right)[/math] converges(Thanks to Mr. CaptainBlack for the upper bound) strictly above zero.
Consider a problem as follows: (I posted this in some other forum for some other purpose. Here I am repeating it for a different purpose. Hope that it won't violate the rules)
I have divided time into different slots, transmitting different coins(one in each slot) with probability of heads Bernoulli[math] P_{k}=\frac{1}{M^{k}}[/math] where k is the slot index.
Then [math] \prod_{i=1}^{\infty}\left(1-\frac{1}{M^{i}}\right)[/math] is the P (Head never happens) = 1-P (Head ever happens) =1-[math] \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math]
[math] \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math] < [math] \sum_{i=1}^{\infty} \frac{1}{M^{i}}[/math] since [math] \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\}[/math] always less than 1 [math] \forall M \geq2[/math] .
[math] \Longrightarrow \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math] < [math] \frac{1}{M-1} \leq 1[/math](=1 for M=2)
Therefore [math] \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math] < 1
and [math] \prod_{i=1}^{\infty}\left(1-\frac{1}{M^{i}}\right)[/math] > 0.