What is the lower bound for the product term with a limit of M>=2?

  • Context: MHB 
  • Thread starter Thread starter bincy
  • Start date Start date
  • Tags Tags
    Limit Product Term
Click For Summary
SUMMARY

The discussion centers on determining the lower and upper bounds for the infinite product term \(\prod_{i=1}^{\infty}\left(1-\frac{1}{M^{i}}\right)\) where \(M \geq 2\). Participants confirm that the product converges strictly above zero and provide methods for establishing upper bounds using logarithmic transformations and series expansions. Specifically, they derive that \(\prod_{n=1}^{\infty} (1-m^{-n}) < e^{-m/(m-1)^2}\) for \(M > 1\), ensuring that the product does not converge to zero.

PREREQUISITES
  • Understanding of infinite products and convergence criteria
  • Familiarity with logarithmic functions and series expansions
  • Knowledge of the Q-Pochhammer symbol and its applications
  • Basic principles of probability, particularly Bernoulli trials
NEXT STEPS
  • Explore the properties of the Q-Pochhammer symbol in combinatorial contexts
  • Study the convergence of infinite products in mathematical analysis
  • Learn about Euler's function and its significance in number theory
  • Investigate advanced techniques for bounding series and products
USEFUL FOR

Mathematicians, statisticians, and researchers in combinatorial analysis or number theory who are interested in infinite products and their convergence properties.

bincy
Messages
38
Reaction score
0
View attachment 145 where M>=2. A close upper bound also will be useful(not like 1 as the upper bound). Thanks in advance.This is also QPochhammer[1/M,1/M,inf]. Courtesy to mathematica.
 

Attachments

  • Tex2Img_1335784100.gif
    Tex2Img_1335784100.gif
    1.7 KB · Views: 125
Physics news on Phys.org
bincybn said:
View attachment 145 where M>=2. A close upper bound also will be useful(not like 1 as the upper bound). Thanks in advance.This is also QPochhammer[1/M,1/M,inf]. Courtesy to mathematica.

If that is what Mathematica thinks it sums to then you can be reasonably confident that there is no simple closed form for that sum in terms of elementary functions.

I can think of a couple of methods of getting upper bounds, the first is to take logs then use the first term of the power series expansion of:

\(\displaystyle \log\left(1-\frac{1}{M^i}\right)<- \frac{1}{M^i} \)

so:

\(\displaystyle \sum_{i=1}^{\infty} \left(\log \left(1-\frac{1}{M^i} \right) \right) <- \sum_{i=1}^{\infty} \frac{1}{M^i}= -\; \frac{1}{M}\;\frac{1}{1-\frac{1}{M}}=\frac{1}{1-M} \)

Then exponentiating we get:

\( \displaystyle \prod_{i=1}^{\infty} \left(1-\frac{1}{M^i}\right) < e^{\frac{1}{1-M}} \)

A second way is to bound the infinite sum above by intergrals.

CB
 
Thanks. Can you tell anything about the lower bound? My doubt is whether it will converge to zero or not?
 
I think, i got the ans for my own previous question. Can anyone pls verify it? All suggestions are always welcome.[math] \prod_{i=1}^{\infty}\left(1-\frac{1}{M^{i}}\right)[/math] converges(Thanks to Mr. CaptainBlack for the upper bound) strictly above zero.

Consider a problem as follows: (I posted this in some other forum for some other purpose. Here I am repeating it for a different purpose. Hope that it won't violate the rules)

I have divided time into different slots, transmitting different coins(one in each slot) with probability of heads Bernoulli[math] P_{k}=\frac{1}{M^{k}}[/math] where k is the slot index.
Then [math] \prod_{i=1}^{\infty}\left(1-\frac{1}{M^{i}}\right)[/math] is the P (Head never happens) = 1-P (Head ever happens) =1-[math] \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math]

[math] \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math] < [math] \sum_{i=1}^{\infty} \frac{1}{M^{i}}[/math] since [math] \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\}[/math] always less than 1 [math] \forall M \geq2[/math] .

[math] \Longrightarrow \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math] < [math] \frac{1}{M-1} \leq 1[/math](=1 for M=2)

Therefore [math] \sum_{i=1}^{\infty} \left\{ \prod_{j=1}^{i-1}\left(1-\frac{1}{M^{j}}\right)\right\} *\left(\frac{1}{M^{i}}\right)[/math] < 1

and [math] \prod_{i=1}^{\infty}\left(1-\frac{1}{M^{i}}\right)[/math] > 0.
 
Last edited:
bincybn said:
View attachment 145 where M>=2. A close upper bound also will be useful(not like 1 as the upper bound). Thanks in advance.This is also QPochhammer[1/M,1/M,inf]. Courtesy to mathematica.

The function...

$\displaystyle \phi(z)=\prod _{n=1}^{\infty} (1-z^{n})$ (1)

... is know as 'Euler's Function'. An explicit elementary expression of (1) is not know so that we try the series expansion of its logarithm...

$\displaystyle \ln \phi(z)= \sum_{n=1}^{\infty} \ln (1-z^{n})= -\sum_{n=1}^{\infty}\ \sum_{k=1}^{\infty} \frac{z^n k}{k}= -\sum_{k=1}^{\infty} \frac{1}{k}\ \sum_{n=1}^{\infty} z^{n k}= - \sum_{k=1}^{\infty} \frac{z^{k}}{k\ (1-z^{k})}$ (2)

Any finite sum of (2) is an 'upper bound' of the function and if k increases then the 'upper bound' is more close to the function. Setting $z=\frac{1}{m}$ in (2) if You uses only the first term of the series You obtain...

$\displaystyle \prod _{n=1}^{\infty} (1-m^{-n}) < e^{- \frac{1}{m-1}}$ (3)

If You use two terms of the series expansion You obtain...

$\displaystyle \prod _{n=1}^{\infty} (1-m^{-n}) < e^{- \frac{1}{m-1}}\ e^{- \frac{1}{2\ (m^{2}-1)}}$ (4)

... and so one...

Kind regards

$\chi$ $\sigma$
 
bincybn said:
Can you tell anything about the lower bound? My doubt is whether it will converge to zero or not?
You can get it bounded away from 0 (for any $m>1$) like this. First, for $0<x<1$, $$ -\ln(1-x) = x + \tfrac{x^2}2 + \tfrac{x^3}3 + \ldots < x + x^2 + x^3 + \ldots = \tfrac x{1-x}.$$
Then $\displaystyle -\sum_{n=1}^\infty\ln(1-m^{-n}) < \sum_{n=1}^\infty \tfrac1{m^n-1}.$ But $m^n-1 = (m-1)(m^{n-1} + \ldots + 1) > m^{n-1}(m-1)$, and therefore $$-\sum_{n=1}^\infty\ln(1-m^{-n}) < \sum_{n=1}^\infty \tfrac1{m^{n-1}(m-1)} = \tfrac m{(m-1)^2}.$$

Thus $\displaystyle \prod_{n=1}^\infty (1-m^{-n}) > e^{-m/(m-1)^2}.$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K