What is the magnitude of the field at point R?

Click For Summary
The discussion focuses on calculating the electric field at point R due to a charge q. The distance from the charge to point R is determined to be 10m, leading to the expression for the electric field at R as E_R = kq/100. There is confusion regarding the inclusion of E_p in the calculations, but it is clarified that the ratio of the fields can be derived from their respective distances. The final expressions for the electric fields at points R and P are confirmed, with the ratio E_R/E_P equating to 9/100. The calculations are validated, and the approach to solving the problem is deemed correct.
paulimerci
Messages
287
Reaction score
47
Homework Statement
Problem attached below.
Relevant Equations
E = kq/r^2
I've no idea how to solve this problem. The sign of the charge is not mentioned, so I'm assuming the charge is "+". The charge exerts an outward electric field. Since two lengths of the right-angle triangle are given, I use the Pythagorean to find the hypotenuse, which is the distance between q and R, and it's found to be 10m.

$$ E = \frac{kq}{r^2}$$
$$ E = \frac{kq} {100}$$
I'm wondering why all the options have ##E_p## in the equation since it asks only for the magnitude of the field for point R. It would be great if anyone could explain how to solve this one.
 

Attachments

  • Screenshot 2023-05-18 at 11.10.41 PM.png
    Screenshot 2023-05-18 at 11.10.41 PM.png
    16.4 KB · Views: 97
Last edited:
Physics news on Phys.org
write expressions for the fields at points P and R in terms of q.
 
haruspex said:
write expressions for the fields at points P and R in terms of q.
ok.
The electric field at point R is
$$ E_{R} = \frac{kq}{100}$$
The electric field at point P is
$$ E_{p} = \frac {kq}{9}$$
$$ 9\times E_{P} = kq$$
$$ 9\times E_{P} = E_R \times 100$$
$$ E_R = \frac {9 E_P} {100}$$
Is it right?
 
paulimerci said:
The electric field at point R is
$$ E_{R} = \frac{kq}{100}$$
The electric field at point P is
$$ E_{p} = \frac {kq}{9}$$
These are wrong because you used centimeters in your calculations.
But final answer is ok since here we calculate the ratio.
 
paulimerci said:
Thank you for pointing out @MatinSAR. I edited it. Does it look ok now?
The electric field at point R is
$$ E_{R} = \frac{kq}{100 \times 10^{-4}}$$
The electric field at point P is
$$ E_{p} = \frac {kq}{9 \times 10^{-4}}$$
The ratio of ##\frac{E_P}{E_R}## gives,
paulimerci said:
$$ 9\times 10^{-4} E_{P} = kq$$
$$ 9\times 10^{-4} E_{P} = E_R \times 100 \times 10^{-4}$$
$$ E_R = \frac {9 E_P} {100}$$
 
@paulimerci Yes, It's correct now.An easier way:

##\frac {E_R}{E_P}=\frac {\frac {kq}{r_R^2}}{\frac {kq}{r_P^2}}=(\frac {r_P}{r_R})^2=(\frac {3}{10})^2=\frac {9}{100}##
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
926
  • · Replies 10 ·
Replies
10
Views
795
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
1K
Replies
12
Views
1K
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
886
Replies
7
Views
3K